Arseniy E. Yuzhalin, Frank J. Lowery, Yohei Saito, Xiangliang Yuan, Jun Yao, Yimin Duan, Jingzhen Ding, Sunil Acharya, Chenyu Zhang, Abigail Fajardo, Hao-Nien Chen, Yongkun Wei, Yutong Sun, Lin Zhang, Yi Xiao, Ping Li, Philip L. Lorenzi, Jason T. Huse, Huihui Fan, Zhongming Zhao, Mien-Chie Hung, Dihua Yu
{"title":"星形胶质细胞诱导的 Cdk5 通过抑制 MHC-I 的表达来逃避免疫识别,从而加速乳腺癌的脑转移。","authors":"Arseniy E. Yuzhalin, Frank J. Lowery, Yohei Saito, Xiangliang Yuan, Jun Yao, Yimin Duan, Jingzhen Ding, Sunil Acharya, Chenyu Zhang, Abigail Fajardo, Hao-Nien Chen, Yongkun Wei, Yutong Sun, Lin Zhang, Yi Xiao, Ping Li, Philip L. Lorenzi, Jason T. Huse, Huihui Fan, Zhongming Zhao, Mien-Chie Hung, Dihua Yu","doi":"10.1038/s41556-024-01509-5","DOIUrl":null,"url":null,"abstract":"Brain metastases (BrMs) evade the immune response to develop in the brain, yet the mechanisms of BrM immune evasion remains unclear. This study shows that brain astrocytes induce the overexpression of neuronal-specific cyclin-dependent kinase 5 (Cdk5) in breast cancer-derived BrMs, which facilitates BrM outgrowth in mice. Cdk5-overexpressing BrMs exhibit reduced expression and function of the class I major histocompatibility complex (MHC-I) and antigen-presentation pathway, which are restored by inhibiting Cdk5 genetically or pharmacologically, as evidenced by single-cell RNA sequencing and functional studies. Mechanistically, Cdk5 suppresses MHC-I expression on the cancer cell membrane through the Irf2bp1–Stat1–importin α–Nlrc5 pathway, enabling BrMs to avoid recognition by T cells. Treatment with roscovitine—a clinically applicable Cdk5 inhibitor—alone or combined with immune checkpoint inhibitors, significantly reduces BrM burden and increases tumour-infiltrating functional CD8+ lymphocytes in mice. Thus, astrocyte-induced Cdk5 overexpression endorses BrM immune evasion, whereas therapeutically targeting Cdk5 markedly improves the efficacy of immune checkpoint inhibitors and inhibits BrM growth. Yuzhalin et al. report that astrocyte-mediated upregulation of Cdk5 in metastatic breast cancer cells inhibits MHC-I expression on the cell surface, thereby enabling escape from killing by CD8+ T cells and facilitating brain metastasis.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1773-1789"},"PeriodicalIF":17.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrocyte-induced Cdk5 expedites breast cancer brain metastasis by suppressing MHC-I expression to evade immune recognition\",\"authors\":\"Arseniy E. Yuzhalin, Frank J. Lowery, Yohei Saito, Xiangliang Yuan, Jun Yao, Yimin Duan, Jingzhen Ding, Sunil Acharya, Chenyu Zhang, Abigail Fajardo, Hao-Nien Chen, Yongkun Wei, Yutong Sun, Lin Zhang, Yi Xiao, Ping Li, Philip L. Lorenzi, Jason T. Huse, Huihui Fan, Zhongming Zhao, Mien-Chie Hung, Dihua Yu\",\"doi\":\"10.1038/s41556-024-01509-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain metastases (BrMs) evade the immune response to develop in the brain, yet the mechanisms of BrM immune evasion remains unclear. This study shows that brain astrocytes induce the overexpression of neuronal-specific cyclin-dependent kinase 5 (Cdk5) in breast cancer-derived BrMs, which facilitates BrM outgrowth in mice. Cdk5-overexpressing BrMs exhibit reduced expression and function of the class I major histocompatibility complex (MHC-I) and antigen-presentation pathway, which are restored by inhibiting Cdk5 genetically or pharmacologically, as evidenced by single-cell RNA sequencing and functional studies. Mechanistically, Cdk5 suppresses MHC-I expression on the cancer cell membrane through the Irf2bp1–Stat1–importin α–Nlrc5 pathway, enabling BrMs to avoid recognition by T cells. Treatment with roscovitine—a clinically applicable Cdk5 inhibitor—alone or combined with immune checkpoint inhibitors, significantly reduces BrM burden and increases tumour-infiltrating functional CD8+ lymphocytes in mice. Thus, astrocyte-induced Cdk5 overexpression endorses BrM immune evasion, whereas therapeutically targeting Cdk5 markedly improves the efficacy of immune checkpoint inhibitors and inhibits BrM growth. Yuzhalin et al. report that astrocyte-mediated upregulation of Cdk5 in metastatic breast cancer cells inhibits MHC-I expression on the cell surface, thereby enabling escape from killing by CD8+ T cells and facilitating brain metastasis.\",\"PeriodicalId\":18977,\"journal\":{\"name\":\"Nature Cell Biology\",\"volume\":\"26 10\",\"pages\":\"1773-1789\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41556-024-01509-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-024-01509-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Astrocyte-induced Cdk5 expedites breast cancer brain metastasis by suppressing MHC-I expression to evade immune recognition
Brain metastases (BrMs) evade the immune response to develop in the brain, yet the mechanisms of BrM immune evasion remains unclear. This study shows that brain astrocytes induce the overexpression of neuronal-specific cyclin-dependent kinase 5 (Cdk5) in breast cancer-derived BrMs, which facilitates BrM outgrowth in mice. Cdk5-overexpressing BrMs exhibit reduced expression and function of the class I major histocompatibility complex (MHC-I) and antigen-presentation pathway, which are restored by inhibiting Cdk5 genetically or pharmacologically, as evidenced by single-cell RNA sequencing and functional studies. Mechanistically, Cdk5 suppresses MHC-I expression on the cancer cell membrane through the Irf2bp1–Stat1–importin α–Nlrc5 pathway, enabling BrMs to avoid recognition by T cells. Treatment with roscovitine—a clinically applicable Cdk5 inhibitor—alone or combined with immune checkpoint inhibitors, significantly reduces BrM burden and increases tumour-infiltrating functional CD8+ lymphocytes in mice. Thus, astrocyte-induced Cdk5 overexpression endorses BrM immune evasion, whereas therapeutically targeting Cdk5 markedly improves the efficacy of immune checkpoint inhibitors and inhibits BrM growth. Yuzhalin et al. report that astrocyte-mediated upregulation of Cdk5 in metastatic breast cancer cells inhibits MHC-I expression on the cell surface, thereby enabling escape from killing by CD8+ T cells and facilitating brain metastasis.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology