Ning Lu, Yong Li, Haidong Sun, Liu Yang, Peng Wang, Changji Li, Pinwen Zhu, Dongli Yu, Hongwang Zhang
{"title":"控制亚结构和马氏体转变硬化的单一参数","authors":"Ning Lu, Yong Li, Haidong Sun, Liu Yang, Peng Wang, Changji Li, Pinwen Zhu, Dongli Yu, Hongwang Zhang","doi":"10.1016/j.jmst.2024.08.052","DOIUrl":null,"url":null,"abstract":"<p>In the present study, a single parameter governing the substructure and the strengthening for martensitic transformation was tentatively explored by detailing the microstructure and the strengthening of a Fe-15 wt.%Cr binary alloy subjected to thermal cycle under high pressure (cooled at 10°C s<sup>–1</sup> from 1050°C under hydrostatic pressure of 1.0–4.0 GPa). Experimental results show that high pressure makes martensitic transformation occur in a Fe-15Cr alloy that traditionally has no high-temperature austenite under atmospheric pressure. The phase transformation begins with the pairing of twinned variants, and the strengthening is solely dependent upon the density of dislocations and variants. The austenite strength at the transformation temperature governs the substructure and the induced strengthening by influencing: (1) The critical size below which twinned variants are solely allowed; (2) the orientation spreading of the pioneer twinned variants toward Bain pairs; (3) the variant thickness and in turn the strengthening extent. The present study sheds light on tuning the substructure and hardening during martensitic transformation via the austenite strength, showing potential scientific and technological importance.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single parameter controlling the substructure and the hardening by martensitic transformation\",\"authors\":\"Ning Lu, Yong Li, Haidong Sun, Liu Yang, Peng Wang, Changji Li, Pinwen Zhu, Dongli Yu, Hongwang Zhang\",\"doi\":\"10.1016/j.jmst.2024.08.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present study, a single parameter governing the substructure and the strengthening for martensitic transformation was tentatively explored by detailing the microstructure and the strengthening of a Fe-15 wt.%Cr binary alloy subjected to thermal cycle under high pressure (cooled at 10°C s<sup>–1</sup> from 1050°C under hydrostatic pressure of 1.0–4.0 GPa). Experimental results show that high pressure makes martensitic transformation occur in a Fe-15Cr alloy that traditionally has no high-temperature austenite under atmospheric pressure. The phase transformation begins with the pairing of twinned variants, and the strengthening is solely dependent upon the density of dislocations and variants. The austenite strength at the transformation temperature governs the substructure and the induced strengthening by influencing: (1) The critical size below which twinned variants are solely allowed; (2) the orientation spreading of the pioneer twinned variants toward Bain pairs; (3) the variant thickness and in turn the strengthening extent. The present study sheds light on tuning the substructure and hardening during martensitic transformation via the austenite strength, showing potential scientific and technological importance.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.052\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Single parameter controlling the substructure and the hardening by martensitic transformation
In the present study, a single parameter governing the substructure and the strengthening for martensitic transformation was tentatively explored by detailing the microstructure and the strengthening of a Fe-15 wt.%Cr binary alloy subjected to thermal cycle under high pressure (cooled at 10°C s–1 from 1050°C under hydrostatic pressure of 1.0–4.0 GPa). Experimental results show that high pressure makes martensitic transformation occur in a Fe-15Cr alloy that traditionally has no high-temperature austenite under atmospheric pressure. The phase transformation begins with the pairing of twinned variants, and the strengthening is solely dependent upon the density of dislocations and variants. The austenite strength at the transformation temperature governs the substructure and the induced strengthening by influencing: (1) The critical size below which twinned variants are solely allowed; (2) the orientation spreading of the pioneer twinned variants toward Bain pairs; (3) the variant thickness and in turn the strengthening extent. The present study sheds light on tuning the substructure and hardening during martensitic transformation via the austenite strength, showing potential scientific and technological importance.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.