{"title":"水翼上不稳定片状气蚀的形成和特征研究","authors":"Lin Wang , Di Chen , Fangping Tang , Haiyu Liu","doi":"10.1016/j.ultsonch.2024.107074","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrofoils, as fundamental components of hydraulic machinery, directly influence the performance of such machinery. This study conducted an analysis of the cavitation characteristics of hydrofoils at a + 4° angle of attack under various cavitation numbers using numerical simulation and experimental research methods. The focus of the research was to explore the phenomenon of unstable sheet cavitation and its causes, as well as to reveal the characteristics of the re-entrant jet. The large eddy simulation method was employed to calculate the cavitation morphology under three different cavitation numbers. The method is highly consistent with the experimental results in simulating the small-scale detachment at the tail of unstable sheet cavitation and the large-scale shedding of cloud cavitation. The study found that the detachment of unstable sheet cavitation is closely related to the re-entrant jet, which exhibits transient and abrupt characteristics during the unstable sheet cavitation phase. Furthermore, by applying FFT processing to the distribution of maximum reverse velocity and the spatiotemporal changes of <em>Ux</em> on characteristic lines, eigenfrequency of the detachment of unstable sheet cavitation were identified. The research results indicate that cavitation mainly show as sheet cavitation when the cavitation closure point does not exceed the zero-slope point. Beyond this point, it transitions to cloud cavitation. This study provides new insights into the cavitation phenomenon of hydrofoils and offers quantitative research on the phenomenon of unstable sheet cavitation.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107074"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724003225/pdfft?md5=966b9755a5928c3e7b3fda234dde1d4d&pid=1-s2.0-S1350417724003225-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study on the formation and characteristics of unstable sheet cavitation on hydrofoils\",\"authors\":\"Lin Wang , Di Chen , Fangping Tang , Haiyu Liu\",\"doi\":\"10.1016/j.ultsonch.2024.107074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrofoils, as fundamental components of hydraulic machinery, directly influence the performance of such machinery. This study conducted an analysis of the cavitation characteristics of hydrofoils at a + 4° angle of attack under various cavitation numbers using numerical simulation and experimental research methods. The focus of the research was to explore the phenomenon of unstable sheet cavitation and its causes, as well as to reveal the characteristics of the re-entrant jet. The large eddy simulation method was employed to calculate the cavitation morphology under three different cavitation numbers. The method is highly consistent with the experimental results in simulating the small-scale detachment at the tail of unstable sheet cavitation and the large-scale shedding of cloud cavitation. The study found that the detachment of unstable sheet cavitation is closely related to the re-entrant jet, which exhibits transient and abrupt characteristics during the unstable sheet cavitation phase. Furthermore, by applying FFT processing to the distribution of maximum reverse velocity and the spatiotemporal changes of <em>Ux</em> on characteristic lines, eigenfrequency of the detachment of unstable sheet cavitation were identified. The research results indicate that cavitation mainly show as sheet cavitation when the cavitation closure point does not exceed the zero-slope point. Beyond this point, it transitions to cloud cavitation. This study provides new insights into the cavitation phenomenon of hydrofoils and offers quantitative research on the phenomenon of unstable sheet cavitation.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"111 \",\"pages\":\"Article 107074\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003225/pdfft?md5=966b9755a5928c3e7b3fda234dde1d4d&pid=1-s2.0-S1350417724003225-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003225\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003225","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Study on the formation and characteristics of unstable sheet cavitation on hydrofoils
Hydrofoils, as fundamental components of hydraulic machinery, directly influence the performance of such machinery. This study conducted an analysis of the cavitation characteristics of hydrofoils at a + 4° angle of attack under various cavitation numbers using numerical simulation and experimental research methods. The focus of the research was to explore the phenomenon of unstable sheet cavitation and its causes, as well as to reveal the characteristics of the re-entrant jet. The large eddy simulation method was employed to calculate the cavitation morphology under three different cavitation numbers. The method is highly consistent with the experimental results in simulating the small-scale detachment at the tail of unstable sheet cavitation and the large-scale shedding of cloud cavitation. The study found that the detachment of unstable sheet cavitation is closely related to the re-entrant jet, which exhibits transient and abrupt characteristics during the unstable sheet cavitation phase. Furthermore, by applying FFT processing to the distribution of maximum reverse velocity and the spatiotemporal changes of Ux on characteristic lines, eigenfrequency of the detachment of unstable sheet cavitation were identified. The research results indicate that cavitation mainly show as sheet cavitation when the cavitation closure point does not exceed the zero-slope point. Beyond this point, it transitions to cloud cavitation. This study provides new insights into the cavitation phenomenon of hydrofoils and offers quantitative research on the phenomenon of unstable sheet cavitation.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.