蛋白质-脂质预融合复合物的动态形成

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-09-10 DOI:10.1016/j.bpj.2024.09.009
Maria Bykhovskaia
{"title":"蛋白质-脂质预融合复合物的动态形成","authors":"Maria Bykhovskaia","doi":"10.1016/j.bpj.2024.09.009","DOIUrl":null,"url":null,"abstract":"Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein synaptotagmin 1 (Syt1) serves as a Ca<ce:sup loc=\"post\">2+</ce:sup> sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating the PM upon Ca<ce:sup loc=\"post\">2+</ce:sup> binding; however, the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein complexin (Cpx) promotes Ca<ce:sup loc=\"post\">2+</ce:sup>-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of the PM and SVs. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a “dead-end” state, wherein Syt1 attaches tightly to the PM but does not immerse into it, as opposed to a prefusion state, which has the tips of the Ca<ce:sup loc=\"post\">2+</ce:sup>-bound C2 domains of Syt1 inserted into the PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous docking of Syt1 to the SNARE-Cpx bundle and the PM, followed by Ca<ce:sup loc=\"post\">2+</ce:sup> chelation and the penetration of the tips of Syt1 domains into the PM, leading to the prefusion state of the protein-lipid complex. Importantly, we found that direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the prefusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative dead-end state of the protein-lipid complex that can be formed if this pathway is disrupted.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic formation of the protein-lipid prefusion complex\",\"authors\":\"Maria Bykhovskaia\",\"doi\":\"10.1016/j.bpj.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein synaptotagmin 1 (Syt1) serves as a Ca<ce:sup loc=\\\"post\\\">2+</ce:sup> sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating the PM upon Ca<ce:sup loc=\\\"post\\\">2+</ce:sup> binding; however, the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein complexin (Cpx) promotes Ca<ce:sup loc=\\\"post\\\">2+</ce:sup>-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of the PM and SVs. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a “dead-end” state, wherein Syt1 attaches tightly to the PM but does not immerse into it, as opposed to a prefusion state, which has the tips of the Ca<ce:sup loc=\\\"post\\\">2+</ce:sup>-bound C2 domains of Syt1 inserted into the PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous docking of Syt1 to the SNARE-Cpx bundle and the PM, followed by Ca<ce:sup loc=\\\"post\\\">2+</ce:sup> chelation and the penetration of the tips of Syt1 domains into the PM, leading to the prefusion state of the protein-lipid complex. Importantly, we found that direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the prefusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative dead-end state of the protein-lipid complex that can be formed if this pathway is disrupted.\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.09.009\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.09.009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

突触小泡(SV)与突触前膜(PM)融合,释放神经元递质。SV 蛋白突触标记蛋白 1(Syt1)是诱发融合的 Ca2+ 传感器。人们认为,Syt1 在与 Ca2+ 结合后可穿透突触膜,从而触发融合;但这一过程的机理细节仍存在争议。Syt1与SNARE(可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体)复合物相互作用,SNARE复合物是一种能使SV-PM附着的盘卷四螺旋束。SNARE相关蛋白复合蛋白(Cpx)可促进Ca2+依赖性融合,并可能与Syt1相互作用。我们采用全原子分子动力学方法研究了 Syt1-SNARE-Cpx 复合物与 PM 和 SV 的脂质双分子层相互作用的形成过程。我们的模拟结果表明,PM-Syt1-SNARE-Cpx复合物可以过渡到 "死端 "状态,即Syt1紧紧地附着在PM上,但并不浸入其中,而与之相反的是预融合状态,即Syt1与Ca2+结合的C2结构域的顶端插入PM中。我们的模拟揭示了Syt1构象转变的顺序,包括Syt1同时与SNARE-Cpx束和PM对接,然后进行Ca2+螯合,Syt1结构域的顶端插入PM,最终形成蛋白质-脂质复合物的预融合状态。重要的是,我们发现促进这些转变需要 Syt1-Cpx 的直接相互作用。因此,我们建立了导致预融合 PM-Syt1-SNARE-Cpx 复合物形成的构象转变的全原子动态模型。我们的模拟还揭示了蛋白-脂质复合物的另一种死端状态,如果这一途径被破坏,就会形成这种复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic formation of the protein-lipid prefusion complex
Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein synaptotagmin 1 (Syt1) serves as a Ca2+ sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating the PM upon Ca2+ binding; however, the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein complexin (Cpx) promotes Ca2+-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of the PM and SVs. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a “dead-end” state, wherein Syt1 attaches tightly to the PM but does not immerse into it, as opposed to a prefusion state, which has the tips of the Ca2+-bound C2 domains of Syt1 inserted into the PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous docking of Syt1 to the SNARE-Cpx bundle and the PM, followed by Ca2+ chelation and the penetration of the tips of Syt1 domains into the PM, leading to the prefusion state of the protein-lipid complex. Importantly, we found that direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the prefusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative dead-end state of the protein-lipid complex that can be formed if this pathway is disrupted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Laplace Approximation of J-factors for rigid base and rigid base pair models of DNA cyclization. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. A computational model for lipid-anchored polysaccharide export by the outer membrane protein GfcD. Estimation of vibrational spectra of Trp-cage protein from nonequilibrium metadynamics simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1