利用激光扫描点云自动生成箱梁桥的几何数字双胞胎

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-09-19 DOI:10.1016/j.autcon.2024.105781
Jiangpeng Shu , Ziyue Zeng , Wenhao Li , Shukang Zhou , Congguang Zhang , Caie Xu , He Zhang
{"title":"利用激光扫描点云自动生成箱梁桥的几何数字双胞胎","authors":"Jiangpeng Shu ,&nbsp;Ziyue Zeng ,&nbsp;Wenhao Li ,&nbsp;Shukang Zhou ,&nbsp;Congguang Zhang ,&nbsp;Caie Xu ,&nbsp;He Zhang","doi":"10.1016/j.autcon.2024.105781","DOIUrl":null,"url":null,"abstract":"<div><div>Geometric modeling is a pivotal step in creating a digital twin for existing bridge structures. Its deficiency of automation makes geometric modeling step time-consuming and laborious. This paper presents a solution for automatically modeling box girder bridges, including external and internal structures, based on laser-scanned point cloud. The solution includes three vital methods: component segmentation, key points extraction of cross-section, and internal structure reconstruction. The results indicate that the established segmentation model, BCR-Net, exhibited better performance than PointNet++ in component segmentation, as demonstrated by mIoU of 0.9751 on the test set. The mean absolute error on the dimension of the pier, bent cap and external and internal structure of the box girder is 0.27 %, 0.38 %, 0.47 %, and 0.48 %, respectively. It means the proposed methods possessed excellent modeling accuracy while ensuring high efficiency than manual modeling, providing a promising solution for digital twin modeling of bridge structures.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic geometric digital twin of box girder bridge using a laser-scanned point cloud\",\"authors\":\"Jiangpeng Shu ,&nbsp;Ziyue Zeng ,&nbsp;Wenhao Li ,&nbsp;Shukang Zhou ,&nbsp;Congguang Zhang ,&nbsp;Caie Xu ,&nbsp;He Zhang\",\"doi\":\"10.1016/j.autcon.2024.105781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geometric modeling is a pivotal step in creating a digital twin for existing bridge structures. Its deficiency of automation makes geometric modeling step time-consuming and laborious. This paper presents a solution for automatically modeling box girder bridges, including external and internal structures, based on laser-scanned point cloud. The solution includes three vital methods: component segmentation, key points extraction of cross-section, and internal structure reconstruction. The results indicate that the established segmentation model, BCR-Net, exhibited better performance than PointNet++ in component segmentation, as demonstrated by mIoU of 0.9751 on the test set. The mean absolute error on the dimension of the pier, bent cap and external and internal structure of the box girder is 0.27 %, 0.38 %, 0.47 %, and 0.48 %, respectively. It means the proposed methods possessed excellent modeling accuracy while ensuring high efficiency than manual modeling, providing a promising solution for digital twin modeling of bridge structures.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092658052400517X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092658052400517X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

几何建模是为现有桥梁结构创建数字孪生结构的关键步骤。由于缺乏自动化,几何建模步骤费时费力。本文提出了一种基于激光扫描点云的箱梁桥自动建模解决方案,包括外部和内部结构。该解决方案包括三种重要方法:构件分割、截面关键点提取和内部结构重建。结果表明,已建立的分割模型 BCR-Net 在组件分割方面的性能优于 PointNet++,在测试集上的 mIoU 为 0.9751。墩台、弯帽和箱梁内外结构尺寸的平均绝对误差分别为 0.27 %、0.38 %、0.47 % 和 0.48 %。这说明所提出的方法具有优异的建模精度,同时保证了比人工建模更高的效率,为桥梁结构的数字孪生建模提供了一种可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic geometric digital twin of box girder bridge using a laser-scanned point cloud
Geometric modeling is a pivotal step in creating a digital twin for existing bridge structures. Its deficiency of automation makes geometric modeling step time-consuming and laborious. This paper presents a solution for automatically modeling box girder bridges, including external and internal structures, based on laser-scanned point cloud. The solution includes three vital methods: component segmentation, key points extraction of cross-section, and internal structure reconstruction. The results indicate that the established segmentation model, BCR-Net, exhibited better performance than PointNet++ in component segmentation, as demonstrated by mIoU of 0.9751 on the test set. The mean absolute error on the dimension of the pier, bent cap and external and internal structure of the box girder is 0.27 %, 0.38 %, 0.47 %, and 0.48 %, respectively. It means the proposed methods possessed excellent modeling accuracy while ensuring high efficiency than manual modeling, providing a promising solution for digital twin modeling of bridge structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Robust optimization model for traceable procurement of construction materials considering contract claims Editorial Board Rutting extraction from vehicle-borne laser point clouds Self-supervised monocular depth estimation on construction sites in low-light conditions and dynamic scenes Automated reinforcement of 3D-printed engineered cementitious composite beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1