利用自配置光学器件测量、处理和生成部分相干光

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-09-20 DOI:10.1038/s41377-024-01622-y
Charles Roques-Carmes, Shanhui Fan, David A. B. Miller
{"title":"利用自配置光学器件测量、处理和生成部分相干光","authors":"Charles Roques-Carmes, Shanhui Fan, David A. B. Miller","doi":"10.1038/s41377-024-01622-y","DOIUrl":null,"url":null,"abstract":"<p>Optical phenomena always display some degree of partial coherence between their respective degrees of freedom. Partial coherence is of particular interest in multimodal systems, where classical and quantum correlations between spatial, polarization, and spectral degrees of freedom can lead to fascinating phenomena (e.g., entanglement) and be leveraged for advanced imaging and sensing modalities (e.g., in hyperspectral, polarization, and ghost imaging). Here, we present a universal method to analyze, process, and generate spatially partially coherent light in multimode systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose average power outputs are sequentially optimized. Once optimized, the network separates the input light into its mutually incoherent components, which is formally equivalent to a diagonalization of the input density matrix. We illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method can be used to perform partially coherent environmental light sensing, generation of multimode partially coherent light with arbitrary coherency matrices, and unscrambling of quantum optical mixtures. We provide guidelines for the experimental realization of this method, including the influence of losses, paving the way for self-configuring photonic devices that can automatically learn optimal modal representations of partially coherent light fields.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring, processing, and generating partially coherent light with self-configuring optics\",\"authors\":\"Charles Roques-Carmes, Shanhui Fan, David A. B. Miller\",\"doi\":\"10.1038/s41377-024-01622-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical phenomena always display some degree of partial coherence between their respective degrees of freedom. Partial coherence is of particular interest in multimodal systems, where classical and quantum correlations between spatial, polarization, and spectral degrees of freedom can lead to fascinating phenomena (e.g., entanglement) and be leveraged for advanced imaging and sensing modalities (e.g., in hyperspectral, polarization, and ghost imaging). Here, we present a universal method to analyze, process, and generate spatially partially coherent light in multimode systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose average power outputs are sequentially optimized. Once optimized, the network separates the input light into its mutually incoherent components, which is formally equivalent to a diagonalization of the input density matrix. We illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method can be used to perform partially coherent environmental light sensing, generation of multimode partially coherent light with arbitrary coherency matrices, and unscrambling of quantum optical mixtures. We provide guidelines for the experimental realization of this method, including the influence of losses, paving the way for self-configuring photonic devices that can automatically learn optimal modal representations of partially coherent light fields.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01622-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01622-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

光学现象总是在各自的自由度之间表现出某种程度的部分相干性。在多模系统中,部分相干性尤其引人关注,因为空间、偏振和光谱自由度之间的经典和量子相关性可导致引人入胜的现象(如纠缠),并可用于先进的成像和传感模式(如高光谱、偏振和鬼影成像)。在这里,我们提出了一种通用方法,利用自配置光网络在多模系统中分析、处理和生成空间部分相干光。我们的方法依赖于级联自配置层,其平均功率输出依次得到优化。一旦优化,网络就会将输入光分离成互不相干的分量,这在形式上等同于输入密度矩阵的对角化。我们用马赫-泽恩德干涉仪阵列的数值模拟来说明我们的方法,并展示了这种方法如何用于进行部分相干环境光传感、产生具有任意相干矩阵的多模部分相干光以及解扰量子光学混合物。我们为这种方法的实验实现(包括损耗的影响)提供了指导,为能够自动学习部分相干光场的最佳模态表示的自配置光子设备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring, processing, and generating partially coherent light with self-configuring optics

Optical phenomena always display some degree of partial coherence between their respective degrees of freedom. Partial coherence is of particular interest in multimodal systems, where classical and quantum correlations between spatial, polarization, and spectral degrees of freedom can lead to fascinating phenomena (e.g., entanglement) and be leveraged for advanced imaging and sensing modalities (e.g., in hyperspectral, polarization, and ghost imaging). Here, we present a universal method to analyze, process, and generate spatially partially coherent light in multimode systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose average power outputs are sequentially optimized. Once optimized, the network separates the input light into its mutually incoherent components, which is formally equivalent to a diagonalization of the input density matrix. We illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method can be used to perform partially coherent environmental light sensing, generation of multimode partially coherent light with arbitrary coherency matrices, and unscrambling of quantum optical mixtures. We provide guidelines for the experimental realization of this method, including the influence of losses, paving the way for self-configuring photonic devices that can automatically learn optimal modal representations of partially coherent light fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures Continuous evolution of Fermi arcs in a minimal ideal photonic Weyl medium Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation A material change for ultra-high precision force sensing Non-volatile photonic-electronic memory via 3D monolithic ferroelectric-silicon ring resonator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1