大气再分析所体现的全球能量平衡

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Surveys in Geophysics Pub Date : 2024-09-21 DOI:10.1007/s10712-024-09861-9
Martin Wild, Michael G. Bosilovich
{"title":"大气再分析所体现的全球能量平衡","authors":"Martin Wild, Michael G. Bosilovich","doi":"10.1007/s10712-024-09861-9","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate the representation of the global mean energy balance components in 10 atmospheric reanalyses, and compare their magnitudes with recent reference estimates as well as the ones simulated by the latest generation of climate models from the 6th phase of the coupled model intercomparison project (CMIP6). Despite the assimilation of comprehensive observational data in reanalyses, the spread amongst the magnitudes of their global energy balance components generally remains substantial, up to more than 20 Wm<sup>−2</sup> in some quantities, and their consistency is typically not higher than amongst the much less observationally constrained CMIP6 models. Relative spreads are particularly large in the reanalysis global mean latent heat fluxes (exceeding 20%) and associated intensity of the global water cycle, as well as in the energy imbalances at the top-of-atmosphere and surface. A comparison of reanalysis runs in full assimilation mode with corresponding runs constrained only by sea surface temperatures reveals marginal differences in their global mean energy balance components. This indicates that discrepancies in the global energy balance components caused by the different model formulations amongst the reanalyses are hardly alleviated by the imposed observational constraints from the assimilation process. Similar to climate models, reanalyses overestimate the global mean surface downward shortwave radiation and underestimate the surface downward longwave radiation by 3–7 Wm<sup>−2</sup><i>.</i> While reanalyses are of tremendous value as references for many atmospheric parameters, they currently may not be suited to serve as references for the magnitudes of the global mean energy balance components.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"18 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Global Energy Balance as Represented in Atmospheric Reanalyses\",\"authors\":\"Martin Wild, Michael G. Bosilovich\",\"doi\":\"10.1007/s10712-024-09861-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we investigate the representation of the global mean energy balance components in 10 atmospheric reanalyses, and compare their magnitudes with recent reference estimates as well as the ones simulated by the latest generation of climate models from the 6th phase of the coupled model intercomparison project (CMIP6). Despite the assimilation of comprehensive observational data in reanalyses, the spread amongst the magnitudes of their global energy balance components generally remains substantial, up to more than 20 Wm<sup>−2</sup> in some quantities, and their consistency is typically not higher than amongst the much less observationally constrained CMIP6 models. Relative spreads are particularly large in the reanalysis global mean latent heat fluxes (exceeding 20%) and associated intensity of the global water cycle, as well as in the energy imbalances at the top-of-atmosphere and surface. A comparison of reanalysis runs in full assimilation mode with corresponding runs constrained only by sea surface temperatures reveals marginal differences in their global mean energy balance components. This indicates that discrepancies in the global energy balance components caused by the different model formulations amongst the reanalyses are hardly alleviated by the imposed observational constraints from the assimilation process. Similar to climate models, reanalyses overestimate the global mean surface downward shortwave radiation and underestimate the surface downward longwave radiation by 3–7 Wm<sup>−2</sup><i>.</i> While reanalyses are of tremendous value as references for many atmospheric parameters, they currently may not be suited to serve as references for the magnitudes of the global mean energy balance components.</p>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10712-024-09861-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10712-024-09861-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们调查了 10 个大气再分析中全球平均能量平衡成分的代表性,并将它们的大小与最近的参考估计值以及第六阶段耦合模式相互比较项目(CMIP6)中最新一代气候模式所模拟的大小进行了比较。尽管在再分析中同化了全面的观测数据,但其全球能量平衡部分的量级之间的差值一般仍然很大,在某些量级上超过了 20 Wm-2,而且其一致性通常不高于观测约束更少的 CMIP6 模式。再分析的全球平均潜热通量(超过 20%)和全球水循环的相关强度,以及大气顶部和地表的能量失衡,相对差值特别大。将完全同化模式下的再分析运行与仅受海面温度约束的相应运行进行比较,可以发现它们的全球平均能量平衡部分存在微小差异。这表明,同化过程中施加的观测约束条件很难缓解由于再分析模型公式不同而造成的全球能量平衡分量的差异。与气候模式类似,再分析高估了全球平均地表向下短波辐射,低估了地表向下长波辐射 3-7 Wm-2。虽然再分析作为许多大气参数的参考具有巨大价值,但目前可能还不适合作为全球平均能量平衡成分大小的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Global Energy Balance as Represented in Atmospheric Reanalyses

In this study, we investigate the representation of the global mean energy balance components in 10 atmospheric reanalyses, and compare their magnitudes with recent reference estimates as well as the ones simulated by the latest generation of climate models from the 6th phase of the coupled model intercomparison project (CMIP6). Despite the assimilation of comprehensive observational data in reanalyses, the spread amongst the magnitudes of their global energy balance components generally remains substantial, up to more than 20 Wm−2 in some quantities, and their consistency is typically not higher than amongst the much less observationally constrained CMIP6 models. Relative spreads are particularly large in the reanalysis global mean latent heat fluxes (exceeding 20%) and associated intensity of the global water cycle, as well as in the energy imbalances at the top-of-atmosphere and surface. A comparison of reanalysis runs in full assimilation mode with corresponding runs constrained only by sea surface temperatures reveals marginal differences in their global mean energy balance components. This indicates that discrepancies in the global energy balance components caused by the different model formulations amongst the reanalyses are hardly alleviated by the imposed observational constraints from the assimilation process. Similar to climate models, reanalyses overestimate the global mean surface downward shortwave radiation and underestimate the surface downward longwave radiation by 3–7 Wm−2. While reanalyses are of tremendous value as references for many atmospheric parameters, they currently may not be suited to serve as references for the magnitudes of the global mean energy balance components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
期刊最新文献
Recent Advances in Machine Learning-Enhanced Joint Inversion of Seismic and Electromagnetic Data Extreme Events Contributing to Tipping Elements and Tipping Points Opportunities for Earth Observation to Inform Risk Management for Ocean Tipping Points A Multi-satellite Perspective on “Hot Tower” Characteristics in the Equatorial Trough Zone An Abrupt Decline in Global Terrestrial Water Storage and Its Relationship with Sea Level Change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1