通过机械化学方法实现 MgCo2O4 的规模化完全转化,从而制造高性能超级电容器

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-09-20 DOI:10.1039/D4QI02020K
Zhiyuan Liu, Qixuan Xiang, Hao Zhang, Xianglong Zhang, Huijun Tan and Yaping Zhao
{"title":"通过机械化学方法实现 MgCo2O4 的规模化完全转化,从而制造高性能超级电容器","authors":"Zhiyuan Liu, Qixuan Xiang, Hao Zhang, Xianglong Zhang, Huijun Tan and Yaping Zhao","doi":"10.1039/D4QI02020K","DOIUrl":null,"url":null,"abstract":"<p >MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>, a cobalt-based binary oxide, has garnered increasing attention as a promising active material for supercapacitor electrodes due to its enhanced conductivity and high theoretical capacitance. In this study, a novel mechanochemical approach was developed to convert stoichiometric MgO and Co<small><sub>2</sub></small>O<small><sub>3</sub></small> into MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>. This innovative synthesis involved a one-step ball milling process that integrates two reaction steps. Initially, MgO reacted with water to form Mg(OH)<small><sub>2</sub></small>, followed by migration of Mg ions from Mg(OH)<small><sub>2</sub></small> into the Co<small><sub>2</sub></small>O<small><sub>3</sub></small> lattice to generate MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>. The milling parameters were optimized to enhance the conversion efficiency of MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small> through X-ray diffraction analysis. Complete conversion of MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small> was achieved with a single batch production capacity of 100 g, using a ratio of water volume to reactant weight of 2.0 mL g<small><sup>−1</sup></small>, a ball-to-powder ratio of 10 : 1, a revolution speed of 350 rpm, and a milling time of 80 hours. The synthesis mechanism was elucidated using X-ray photoelectron spectroscopy. The synthesized MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small> particles exhibited a small particle size of 117.8 nm and a high specific surface area of 63.3 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. Based on these properties, the electrode exhibited a notable specific charge of 266.3 C g<small><sup>−1</sup></small> at 0.1 A g<small><sup>−1</sup></small>, highlighting its potential as an excellent active material for supercapacitor electrodes. This study demonstrates a facile, green, cost-effective, and scalable production method for MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>, promoting its application in electrochemical energy storage.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable complete conversion of MgCo2O4 by mechanochemistry for high-performance supercapacitors†\",\"authors\":\"Zhiyuan Liu, Qixuan Xiang, Hao Zhang, Xianglong Zhang, Huijun Tan and Yaping Zhao\",\"doi\":\"10.1039/D4QI02020K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>, a cobalt-based binary oxide, has garnered increasing attention as a promising active material for supercapacitor electrodes due to its enhanced conductivity and high theoretical capacitance. In this study, a novel mechanochemical approach was developed to convert stoichiometric MgO and Co<small><sub>2</sub></small>O<small><sub>3</sub></small> into MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>. This innovative synthesis involved a one-step ball milling process that integrates two reaction steps. Initially, MgO reacted with water to form Mg(OH)<small><sub>2</sub></small>, followed by migration of Mg ions from Mg(OH)<small><sub>2</sub></small> into the Co<small><sub>2</sub></small>O<small><sub>3</sub></small> lattice to generate MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>. The milling parameters were optimized to enhance the conversion efficiency of MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small> through X-ray diffraction analysis. Complete conversion of MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small> was achieved with a single batch production capacity of 100 g, using a ratio of water volume to reactant weight of 2.0 mL g<small><sup>−1</sup></small>, a ball-to-powder ratio of 10 : 1, a revolution speed of 350 rpm, and a milling time of 80 hours. The synthesis mechanism was elucidated using X-ray photoelectron spectroscopy. The synthesized MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small> particles exhibited a small particle size of 117.8 nm and a high specific surface area of 63.3 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. Based on these properties, the electrode exhibited a notable specific charge of 266.3 C g<small><sup>−1</sup></small> at 0.1 A g<small><sup>−1</sup></small>, highlighting its potential as an excellent active material for supercapacitor electrodes. This study demonstrates a facile, green, cost-effective, and scalable production method for MgCo<small><sub>2</sub></small>O<small><sub>4</sub></small>, promoting its application in electrochemical energy storage.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02020k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02020k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MgCo2O4 是一种钴基二元氧化物,因其具有增强的导电性和较高的理论电容,已作为一种有前途的超级电容器电极活性材料而受到越来越多的关注。本研究开发了一种新颖的机械化学方法,将化学计量的 MgO 和 Co2O3 转化为 MgCo2O4。这种创新的合成方法采用一步球磨工艺,其中包含两个反应步骤。首先,氧化镁与水反应生成 Mg(OH)2,然后镁离子从 Mg(OH)2 迁移到 Co2O3 晶格中生成 MgCo2O4。通过 X 射线衍射分析,对研磨参数进行了优化,以提高 MgCo2O4 的转化效率。在水量与反应物重量比为 2.0 mL/g、球粉比为 10:1、转速为 350 rpm、研磨时间为 80 小时的条件下,单批生产能力为 100 g,实现了 MgCo2O4 的完全转化。利用 X 射线光电子能谱阐明了合成机理。合成的钴酸镁颗粒粒径小(117.8 nm),比表面积高(63.3 m²/g),基于这些特性,该电极在 0.1 A/g 时的比电容高达 665.8 F/g,凸显了其作为超级电容器电极的优秀活性材料的潜力。这项研究展示了一种简便、绿色、经济、可扩展的钴酸镁生产方法,促进了钴酸镁在电化学储能领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable complete conversion of MgCo2O4 by mechanochemistry for high-performance supercapacitors†

MgCo2O4, a cobalt-based binary oxide, has garnered increasing attention as a promising active material for supercapacitor electrodes due to its enhanced conductivity and high theoretical capacitance. In this study, a novel mechanochemical approach was developed to convert stoichiometric MgO and Co2O3 into MgCo2O4. This innovative synthesis involved a one-step ball milling process that integrates two reaction steps. Initially, MgO reacted with water to form Mg(OH)2, followed by migration of Mg ions from Mg(OH)2 into the Co2O3 lattice to generate MgCo2O4. The milling parameters were optimized to enhance the conversion efficiency of MgCo2O4 through X-ray diffraction analysis. Complete conversion of MgCo2O4 was achieved with a single batch production capacity of 100 g, using a ratio of water volume to reactant weight of 2.0 mL g−1, a ball-to-powder ratio of 10 : 1, a revolution speed of 350 rpm, and a milling time of 80 hours. The synthesis mechanism was elucidated using X-ray photoelectron spectroscopy. The synthesized MgCo2O4 particles exhibited a small particle size of 117.8 nm and a high specific surface area of 63.3 m2 g−1. Based on these properties, the electrode exhibited a notable specific charge of 266.3 C g−1 at 0.1 A g−1, highlighting its potential as an excellent active material for supercapacitor electrodes. This study demonstrates a facile, green, cost-effective, and scalable production method for MgCo2O4, promoting its application in electrochemical energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1