从单宁酸和芦苇秆中提取的氮氧共掺层多孔碳用于高性能超级电容器

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-12 DOI:10.1021/acsaem.4c0102710.1021/acsaem.4c01027
Yunxiao Zhang, Tiantian Hu, Shanxia Hu, Jingqiang Zhang, Mengting Wang, Minjie Zhou, Zhaohui Hou, Binhong He* and Yu Liu*, 
{"title":"从单宁酸和芦苇秆中提取的氮氧共掺层多孔碳用于高性能超级电容器","authors":"Yunxiao Zhang,&nbsp;Tiantian Hu,&nbsp;Shanxia Hu,&nbsp;Jingqiang Zhang,&nbsp;Mengting Wang,&nbsp;Minjie Zhou,&nbsp;Zhaohui Hou,&nbsp;Binhong He* and Yu Liu*,&nbsp;","doi":"10.1021/acsaem.4c0102710.1021/acsaem.4c01027","DOIUrl":null,"url":null,"abstract":"<p >The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m<sup>2</sup>/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen and Oxygen Codoped Hierarchically Porous Carbon Derived from Tannic Acid and Reed Straw for High-Performance Supercapacitors\",\"authors\":\"Yunxiao Zhang,&nbsp;Tiantian Hu,&nbsp;Shanxia Hu,&nbsp;Jingqiang Zhang,&nbsp;Mengting Wang,&nbsp;Minjie Zhou,&nbsp;Zhaohui Hou,&nbsp;Binhong He* and Yu Liu*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0102710.1021/acsaem.4c01027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m<sup>2</sup>/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01027\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01027","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有效利用丰富的天然生物质衍生材料作为开发高性能电极的可持续前驱体,对于推进超级电容器的实际应用具有重要意义。在本研究中,我们提出了一种有效的策略,即通过 KOH 和三聚氰胺(MA)的共化学活化以及预碳化,将生物质芦苇秆和单宁酸(TA)作为双重碳源转化为具有丰富微/介孔互连层状结构的 N、O 共掺分层多孔碳电极材料,命名为 N-RTC-1.5。N-RTC-1.5 具有独特的蜂窝状多孔结构,比表面积高达 2545 m2/g。作为超级电容器电极,在三电极系统中,N-RTC-1.5 在 1 A/g 时的比电容高达 366.0 F/g。此外,N-RTC-1.5//N-RTC-1.5 对称超级电容器的能量密度达到 18.32 Wh/kg,在 3 A/g 条件下循环 10000 次后,电容保持率约为 96%。这项研究为将生物质转化为高性能超级电容器电极所需的新型碳材料提供了一种简单、可持续和环保的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogen and Oxygen Codoped Hierarchically Porous Carbon Derived from Tannic Acid and Reed Straw for High-Performance Supercapacitors

The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m2/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1