{"title":"从单宁酸和芦苇秆中提取的氮氧共掺层多孔碳用于高性能超级电容器","authors":"Yunxiao Zhang, Tiantian Hu, Shanxia Hu, Jingqiang Zhang, Mengting Wang, Minjie Zhou, Zhaohui Hou, Binhong He* and Yu Liu*, ","doi":"10.1021/acsaem.4c0102710.1021/acsaem.4c01027","DOIUrl":null,"url":null,"abstract":"<p >The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m<sup>2</sup>/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen and Oxygen Codoped Hierarchically Porous Carbon Derived from Tannic Acid and Reed Straw for High-Performance Supercapacitors\",\"authors\":\"Yunxiao Zhang, Tiantian Hu, Shanxia Hu, Jingqiang Zhang, Mengting Wang, Minjie Zhou, Zhaohui Hou, Binhong He* and Yu Liu*, \",\"doi\":\"10.1021/acsaem.4c0102710.1021/acsaem.4c01027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m<sup>2</sup>/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01027\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01027","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nitrogen and Oxygen Codoped Hierarchically Porous Carbon Derived from Tannic Acid and Reed Straw for High-Performance Supercapacitors
The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m2/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.