{"title":"使用金属装饰的 C3N4 纳米管将 CO2 还原成 CO 的高选择性","authors":"Chi-You Liu*, and , Elise Yu-Tzu Li*, ","doi":"10.1021/acsaem.4c0192210.1021/acsaem.4c01922","DOIUrl":null,"url":null,"abstract":"<p >An important aspect of the CO<sub>2</sub> reduction reaction (CO2RR) is to inhibit the H<sub>2</sub> evolution reaction (HER) at the electrodes and to increase the formation of other valuable carbon products. In principle, a higher CO product selectivity allows for a higher amount of C<sub>2+</sub> products in the CO2RR. Here, we report a material, the metal-decorated C<sub>3</sub>N<sub>4</sub> nanotubes (M<sub><i>n</i></sub>/CNNTs, <i>n</i> = 1 and 4), which exhibits high CO selectivity and low HER probabilities. Our DFT calculations indicate that this catalyst system strongly activates the CO<sub>2</sub> molecule through a unique adsorption site on the surface, which then undergoes the COOH intermediate transformation to CO. The results show that the single Fe or Cu atom combined with the armchair-type CNNTs shows the best CO selectivity with low CO2RR overpotentials (<0.4 V), signifying an opportunity for efficient and economical CO<sub>2</sub> conversion for future applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Selectivity in CO2 Reduction to CO Using Metal-Decorated C3N4 Nanotubes\",\"authors\":\"Chi-You Liu*, and , Elise Yu-Tzu Li*, \",\"doi\":\"10.1021/acsaem.4c0192210.1021/acsaem.4c01922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An important aspect of the CO<sub>2</sub> reduction reaction (CO2RR) is to inhibit the H<sub>2</sub> evolution reaction (HER) at the electrodes and to increase the formation of other valuable carbon products. In principle, a higher CO product selectivity allows for a higher amount of C<sub>2+</sub> products in the CO2RR. Here, we report a material, the metal-decorated C<sub>3</sub>N<sub>4</sub> nanotubes (M<sub><i>n</i></sub>/CNNTs, <i>n</i> = 1 and 4), which exhibits high CO selectivity and low HER probabilities. Our DFT calculations indicate that this catalyst system strongly activates the CO<sub>2</sub> molecule through a unique adsorption site on the surface, which then undergoes the COOH intermediate transformation to CO. The results show that the single Fe or Cu atom combined with the armchair-type CNNTs shows the best CO selectivity with low CO2RR overpotentials (<0.4 V), signifying an opportunity for efficient and economical CO<sub>2</sub> conversion for future applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01922\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01922","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
二氧化碳还原反应(CO2RR)的一个重要方面是抑制电极上的 H2 演化反应(HER),并增加其他有价值碳产物的形成。原则上,较高的 CO 产物选择性可以在 CO2RR 中产生较多的 C2+ 产物。在此,我们报告了一种材料,即金属装饰的 C3N4 纳米管(Mn/CNNTs,n = 1 和 4),它具有较高的 CO 选择性和较低的 HER 概率。我们的 DFT 计算表明,这种催化剂体系通过表面独特的吸附位点强力激活 CO2 分子,然后经过 COOH 中间转化为 CO。结果表明,单个铁原子或铜原子与扶手椅型 CNNTs 的结合显示出最佳的 CO 选择性,且 CO2RR 过电位较低(0.4 V),这为未来应用中高效、经济的 CO2 转化提供了机会。
High Selectivity in CO2 Reduction to CO Using Metal-Decorated C3N4 Nanotubes
An important aspect of the CO2 reduction reaction (CO2RR) is to inhibit the H2 evolution reaction (HER) at the electrodes and to increase the formation of other valuable carbon products. In principle, a higher CO product selectivity allows for a higher amount of C2+ products in the CO2RR. Here, we report a material, the metal-decorated C3N4 nanotubes (Mn/CNNTs, n = 1 and 4), which exhibits high CO selectivity and low HER probabilities. Our DFT calculations indicate that this catalyst system strongly activates the CO2 molecule through a unique adsorption site on the surface, which then undergoes the COOH intermediate transformation to CO. The results show that the single Fe or Cu atom combined with the armchair-type CNNTs shows the best CO selectivity with low CO2RR overpotentials (<0.4 V), signifying an opportunity for efficient and economical CO2 conversion for future applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.