Shuqi Chen, Wenxia Gao, Pengjin Ge, Shuhua Chang, Ting Wang, Quan Zhao, Bin He
{"title":"装载果胶微球的负电荷热敏水凝胶可恢复溃疡性结肠炎治疗的黏膜屏障","authors":"Shuqi Chen, Wenxia Gao, Pengjin Ge, Shuhua Chang, Ting Wang, Quan Zhao, Bin He","doi":"10.1021/acs.biomac.4c01019","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC), a chronic inflammatory bowel disease, poses a heightened colorectal cancer risk due to persistent mucosal inflammation and barrier dysfunction. In this article, a negatively charged thermosensitive hydrogel loaded with pectin microspheres was used as the enema for UC treatment. Succinic acid was immobilized on poly(ε-caprolactone-<i>co</i>-glycolide)-poly(ethylene glycol)-poly(ε-caprolactone-<i>co</i>-glycolide) (PCLGA-PEG-PCLGA) triblock copolymers to preferentially coat on cationic-inflamed sites via electrostatic interaction for reconstructing the mucosal barrier. Anti-inflammation drug 5-aminosalicylic acid (5-ASA) and curcumin-loaded pectin microspheres (Pec@Cur) were dispersed in the hydrogel for the inflammatory treatment of UC. The thermally sensitive hydrogels were rectally injected into UC model mice. The hydrogel effectively adhered to ulcers and prolonged colon retention, enabling sustained drug release and remarkably relieving the symptoms of colitis. The negatively charged hydrogel exhibited excellent significance in the UC treatment.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6801-6813"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negatively Charged Thermosensitive Hydrogel Loaded with Pectin Microspheres to Recover the Mucosal Barrier for Ulcerative Colitis Therapy.\",\"authors\":\"Shuqi Chen, Wenxia Gao, Pengjin Ge, Shuhua Chang, Ting Wang, Quan Zhao, Bin He\",\"doi\":\"10.1021/acs.biomac.4c01019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ulcerative colitis (UC), a chronic inflammatory bowel disease, poses a heightened colorectal cancer risk due to persistent mucosal inflammation and barrier dysfunction. In this article, a negatively charged thermosensitive hydrogel loaded with pectin microspheres was used as the enema for UC treatment. Succinic acid was immobilized on poly(ε-caprolactone-<i>co</i>-glycolide)-poly(ethylene glycol)-poly(ε-caprolactone-<i>co</i>-glycolide) (PCLGA-PEG-PCLGA) triblock copolymers to preferentially coat on cationic-inflamed sites via electrostatic interaction for reconstructing the mucosal barrier. Anti-inflammation drug 5-aminosalicylic acid (5-ASA) and curcumin-loaded pectin microspheres (Pec@Cur) were dispersed in the hydrogel for the inflammatory treatment of UC. The thermally sensitive hydrogels were rectally injected into UC model mice. The hydrogel effectively adhered to ulcers and prolonged colon retention, enabling sustained drug release and remarkably relieving the symptoms of colitis. The negatively charged hydrogel exhibited excellent significance in the UC treatment.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"6801-6813\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01019\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01019","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Negatively Charged Thermosensitive Hydrogel Loaded with Pectin Microspheres to Recover the Mucosal Barrier for Ulcerative Colitis Therapy.
Ulcerative colitis (UC), a chronic inflammatory bowel disease, poses a heightened colorectal cancer risk due to persistent mucosal inflammation and barrier dysfunction. In this article, a negatively charged thermosensitive hydrogel loaded with pectin microspheres was used as the enema for UC treatment. Succinic acid was immobilized on poly(ε-caprolactone-co-glycolide)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolide) (PCLGA-PEG-PCLGA) triblock copolymers to preferentially coat on cationic-inflamed sites via electrostatic interaction for reconstructing the mucosal barrier. Anti-inflammation drug 5-aminosalicylic acid (5-ASA) and curcumin-loaded pectin microspheres (Pec@Cur) were dispersed in the hydrogel for the inflammatory treatment of UC. The thermally sensitive hydrogels were rectally injected into UC model mice. The hydrogel effectively adhered to ulcers and prolonged colon retention, enabling sustained drug release and remarkably relieving the symptoms of colitis. The negatively charged hydrogel exhibited excellent significance in the UC treatment.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.