GaCl3 催化 Knoevenagel 缩合实现受体-供体-受体小分子受体:DFT 机制研究。

IF 3.3 2区 化学 Q1 CHEMISTRY, ORGANIC The Journal of Organic Chemistry Pub Date : 2024-09-23 DOI:10.1021/acs.joc.4c01806
Xiaofan Shi, Yaqi Zhao, Ying Zhou, Zhewei Li, Yanhui Tang, Hongyuan Fu, Yangqiu Liu, Zhi-Guo Zhang, Min Pu, Ming Lei
{"title":"GaCl3 催化 Knoevenagel 缩合实现受体-供体-受体小分子受体:DFT 机制研究。","authors":"Xiaofan Shi, Yaqi Zhao, Ying Zhou, Zhewei Li, Yanhui Tang, Hongyuan Fu, Yangqiu Liu, Zhi-Guo Zhang, Min Pu, Ming Lei","doi":"10.1021/acs.joc.4c01806","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, the reaction mechanism for the GaCl<sub>3</sub>-catalyzed Knoevenagel condensation of 2-formylindacenodithieno[3,2-<i>b</i>]thiophene (ITIC-CHO) and active methylene compound 1,1-dicyanomethylene-3-indanone (IC) to synthesize ITIC in the presence of acetic anhydride was investigated using the density functional theory (DFT) method. The calculated results indicate that this reaction follows a bimolecular GaCl<sub>3</sub> catalytic mechanism. The free energy span for the monomolecular GaCl<sub>3</sub> catalytic mechanism is the highest (31.8 kcal/mol), followed by the trimolecular GaCl<sub>3</sub> catalytic mechanism (26.4 kcal/mol) and the bimolecular GaCl<sub>3</sub> catalytic mechanism (26.3 kcal/mol). The trimolecular GaCl<sub>3</sub> path and bimolecular GaCl<sub>3</sub> path are competitive, but the former path is limited by the concentration of GaCl<sub>3</sub>. The inclusion of GaCl<sub>3</sub> could stabilize the transition states of C-H activation. Compared to the GaCl<sub>3</sub>-catalyzed Knoevenagel condensation, that catalyzed by pyridine is not advantageous, owning a high energy span of 31.7 kcal/mol. These agree well with experimental results. This work could provide a novel theoretical understanding of the Knoevenagel condensation, which could inspire the development of a synthesis strategy for electron acceptor materials.</p>","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The GaCl<sub>3</sub>-Catalyzed Knoevenagel Condensation To Achieve Acceptor-Donor-Acceptor Small-Molecule Acceptors: A DFT Mechanistic Study.\",\"authors\":\"Xiaofan Shi, Yaqi Zhao, Ying Zhou, Zhewei Li, Yanhui Tang, Hongyuan Fu, Yangqiu Liu, Zhi-Guo Zhang, Min Pu, Ming Lei\",\"doi\":\"10.1021/acs.joc.4c01806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, the reaction mechanism for the GaCl<sub>3</sub>-catalyzed Knoevenagel condensation of 2-formylindacenodithieno[3,2-<i>b</i>]thiophene (ITIC-CHO) and active methylene compound 1,1-dicyanomethylene-3-indanone (IC) to synthesize ITIC in the presence of acetic anhydride was investigated using the density functional theory (DFT) method. The calculated results indicate that this reaction follows a bimolecular GaCl<sub>3</sub> catalytic mechanism. The free energy span for the monomolecular GaCl<sub>3</sub> catalytic mechanism is the highest (31.8 kcal/mol), followed by the trimolecular GaCl<sub>3</sub> catalytic mechanism (26.4 kcal/mol) and the bimolecular GaCl<sub>3</sub> catalytic mechanism (26.3 kcal/mol). The trimolecular GaCl<sub>3</sub> path and bimolecular GaCl<sub>3</sub> path are competitive, but the former path is limited by the concentration of GaCl<sub>3</sub>. The inclusion of GaCl<sub>3</sub> could stabilize the transition states of C-H activation. Compared to the GaCl<sub>3</sub>-catalyzed Knoevenagel condensation, that catalyzed by pyridine is not advantageous, owning a high energy span of 31.7 kcal/mol. These agree well with experimental results. This work could provide a novel theoretical understanding of the Knoevenagel condensation, which could inspire the development of a synthesis strategy for electron acceptor materials.</p>\",\"PeriodicalId\":57,\"journal\":{\"name\":\"The Journal of Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.joc.4c01806\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c01806","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

本文采用密度泛函理论(DFT)方法研究了在醋酸酐存在下,GaCl3催化2-甲酰基茚并噻吩并[3,2-b]噻吩(ITIC-CHO)与活性亚甲基化合物1,1-二氰亚甲基-3-茚酮(IC)合成ITIC的Knoevenagel缩合反应机理。计算结果表明,该反应遵循双分子 GaCl3 催化机理。单分子 GaCl3 催化机理的自由能跨度最大(31.8 kcal/mol),其次是三分子 GaCl3 催化机理(26.4 kcal/mol)和双分子 GaCl3 催化机理(26.3 kcal/mol)。三分子 GaCl3 路径和双分子 GaCl3 路径具有竞争性,但前者受到 GaCl3 浓度的限制。加入 GaCl3 可以稳定 C-H 活化的过渡态。与 GaCl3 催化的 Knoevenagel 缩合相比,吡啶催化的 Knoevenagel 缩合没有优势,能量跨度高达 31.7 kcal/mol。这些结果与实验结果十分吻合。这项工作可为 Knoevenagel 缩合提供新的理论认识,从而为电子受体材料合成策略的开发提供启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The GaCl3-Catalyzed Knoevenagel Condensation To Achieve Acceptor-Donor-Acceptor Small-Molecule Acceptors: A DFT Mechanistic Study.

Herein, the reaction mechanism for the GaCl3-catalyzed Knoevenagel condensation of 2-formylindacenodithieno[3,2-b]thiophene (ITIC-CHO) and active methylene compound 1,1-dicyanomethylene-3-indanone (IC) to synthesize ITIC in the presence of acetic anhydride was investigated using the density functional theory (DFT) method. The calculated results indicate that this reaction follows a bimolecular GaCl3 catalytic mechanism. The free energy span for the monomolecular GaCl3 catalytic mechanism is the highest (31.8 kcal/mol), followed by the trimolecular GaCl3 catalytic mechanism (26.4 kcal/mol) and the bimolecular GaCl3 catalytic mechanism (26.3 kcal/mol). The trimolecular GaCl3 path and bimolecular GaCl3 path are competitive, but the former path is limited by the concentration of GaCl3. The inclusion of GaCl3 could stabilize the transition states of C-H activation. Compared to the GaCl3-catalyzed Knoevenagel condensation, that catalyzed by pyridine is not advantageous, owning a high energy span of 31.7 kcal/mol. These agree well with experimental results. This work could provide a novel theoretical understanding of the Knoevenagel condensation, which could inspire the development of a synthesis strategy for electron acceptor materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Organic Chemistry
The Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
期刊最新文献
Investigation of Electrocatalytic Oxidative Coupling of Arylamines for the Selective Synthesis of Azo Aromatics Carbonylative Cyclization of 2-Iodofluorobenzenes and 2-Aminophenols with Recyclable Palladium-Complexed Dendrimers on SBA-15: One-Pot Synthesis of Dibenzoxazepinones Modular Synthesis of Azidobicyclo[2.1.1]hexanes via (3 + 2) Annulation of α-Substituted Vinyl Azides and Bicyclo[1.1.0]butanes An Approach for Highly Enantioselective Synthesis of meta-Disubstituted [n]Paracyclophanes Correction to “Axially Chiral Trifluoromethylbenzimidazolylbenzoic Acid: A Chiral Derivatizing Agent for α-Chiral Primary Amines and Secondary Alcohols To Determine the Absolute Configuration”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1