睾丸接触双酚 A 后肿瘤微环境的建立。

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2024-09-19 DOI:10.1016/j.ecoenv.2024.117071
{"title":"睾丸接触双酚 A 后肿瘤微环境的建立。","authors":"","doi":"10.1016/j.ecoenv.2024.117071","DOIUrl":null,"url":null,"abstract":"<div><div>Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual’s variability in cancer susceptibility.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011473/pdfft?md5=ff1d109885af135076cecfdccf14677a&pid=1-s2.0-S0147651324011473-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Establishment of tumor microenvironment following bisphenol A exposure in the testis\",\"authors\":\"\",\"doi\":\"10.1016/j.ecoenv.2024.117071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual’s variability in cancer susceptibility.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011473/pdfft?md5=ff1d109885af135076cecfdccf14677a&pid=1-s2.0-S0147651324011473-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011473\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011473","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管双酚 A(BPA)对异雌激素靶器官、睾丸和附睾以及男性生育能力的有害作用已得到充分证实,但人们对暴露于双酚 A 后男性生殖道免疫特权系统的破坏仍然知之甚少。因此,本研究旨在根据 RNA 测序结果探索双酚 A 干扰睾丸免疫特权的确切机制。研究人员对 CD-1 雄性小鼠进行了为期 6 周的口服双酚 A 暴露试验,每天分别给予小鼠无不良效应水平(NOAEL,5 毫克双酚 A/千克体重)和最低不良效应水平(LOAEL,50 毫克双酚 A/千克体重)的双酚 A 暴露剂量。暴露于最低观测不良效应水平后,睾丸中与免疫反应相关的转录本表达上调。此外,双酚 A 通过招募肿瘤相关巨噬细胞(TAMs)将睾丸微环境转换为肿瘤友好环境,TAMs 可产生抗炎和促炎细胞因子,如 TNF-α、TLR2、IL-10 和 CXCL9。通过上调 TAMs 中的基质金属肽酶 2 和上调 Leydig 细胞核中 AR 的表达,睾丸血管的数量增加了约 2 倍。此外,我们还发现,由于个体对癌症的易感性不同,即使无观测不良效应水平双酚 A 浓度也会产生肿瘤支持环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishment of tumor microenvironment following bisphenol A exposure in the testis
Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual’s variability in cancer susceptibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Crotonaldehyde paralyzes arteries by inducing impairment of ion channels, vascular histiocytic injury, overproduction of reactive oxygen species, mitochondrial damage, and autophagy Taraxasterol attenuates zearalenone-induced kidney damage in mice by modulating oxidative stress and endoplasmic reticulum stress Polystyrene nanoplastics mediate skeletal toxicity through oxidative stress and the BMP pathway in zebrafish (Danio rerio) Dietary Aflatoxin G1 exposure causes an imbalance between pulmonary tissue-resident alveolar macrophages and monocyte-derived macrophages in both mother and offspring mice Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1