玉米赤霉烯酮通过激活雌激素受体介导的 Rho/ROCK/PMLC 信号通路促进子宫内膜癌细胞迁移和侵袭。

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Food and Chemical Toxicology Pub Date : 2024-09-19 DOI:10.1016/j.fct.2024.115017
{"title":"玉米赤霉烯酮通过激活雌激素受体介导的 Rho/ROCK/PMLC 信号通路促进子宫内膜癌细胞迁移和侵袭。","authors":"","doi":"10.1016/j.fct.2024.115017","DOIUrl":null,"url":null,"abstract":"<div><div>Zearalenone (ZEA), has emerged as a potential endocrine-disrupting chemical (EDC). Previous results show ZEA effects on endometrial stromal cell apoptosis, migration, and growth of endometriosis. Despite the reported presence of ZEA in Endometrial Cancer (EC) patient's blood and tissues, ZEA-induced EC promotion and its mechanism/s remain elusive. In this study, Ishikawa cells were used to investigate the ZEA effects on Ishikawa cell migration, invasion, and the underlying mechanism involved in these events. Ishikawa cells were exposed to low concentrations of ZEA (5, 25, and 125 nM) for 48 h, and morphological alterations, migration, invasion, markers associated with epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, RhoA/ROCK/PMLC pathway activation were analyzed. ZEA (25 nM) exposure caused morphological alterations like stress fiber, filopodia formation, loss of cell adhesion, and a significant increase in migration and invasive potential in extracellular matrix-coated porous membranes. Moreover, ZEA exposure also increases the Rho-GTPase activity and expression of pathway mediators, GEFH1, RhoA, ROCK1+2, CDC42, and PMLC/MLC. Furthermore, pre-treatment with specific pharmacological inhibitors for Estrogen receptor-alpha (ER-α) and ROCK attenuate the ZEA-induced stress fiber formation and altered expression of E-cadherin, Vimentin, and Rho/ROCK/PMLC pathway mediators. These findings suggest that Rho/ROCK/PMLC signaling pathways are involved in ZEA-induced Ishikawa cell migration and invasion.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zearalenone promotes endometrial cancer cell migration and invasion via activation of estrogen receptor-mediated Rho/ROCK/PMLC signaling pathway\",\"authors\":\"\",\"doi\":\"10.1016/j.fct.2024.115017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zearalenone (ZEA), has emerged as a potential endocrine-disrupting chemical (EDC). Previous results show ZEA effects on endometrial stromal cell apoptosis, migration, and growth of endometriosis. Despite the reported presence of ZEA in Endometrial Cancer (EC) patient's blood and tissues, ZEA-induced EC promotion and its mechanism/s remain elusive. In this study, Ishikawa cells were used to investigate the ZEA effects on Ishikawa cell migration, invasion, and the underlying mechanism involved in these events. Ishikawa cells were exposed to low concentrations of ZEA (5, 25, and 125 nM) for 48 h, and morphological alterations, migration, invasion, markers associated with epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, RhoA/ROCK/PMLC pathway activation were analyzed. ZEA (25 nM) exposure caused morphological alterations like stress fiber, filopodia formation, loss of cell adhesion, and a significant increase in migration and invasive potential in extracellular matrix-coated porous membranes. Moreover, ZEA exposure also increases the Rho-GTPase activity and expression of pathway mediators, GEFH1, RhoA, ROCK1+2, CDC42, and PMLC/MLC. Furthermore, pre-treatment with specific pharmacological inhibitors for Estrogen receptor-alpha (ER-α) and ROCK attenuate the ZEA-induced stress fiber formation and altered expression of E-cadherin, Vimentin, and Rho/ROCK/PMLC pathway mediators. These findings suggest that Rho/ROCK/PMLC signaling pathways are involved in ZEA-induced Ishikawa cell migration and invasion.</div></div>\",\"PeriodicalId\":317,\"journal\":{\"name\":\"Food and Chemical Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Chemical Toxicology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278691524005830\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691524005830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

玉米赤霉烯酮(ZEA)已成为一种潜在的内分泌干扰化学物质(EDC)。先前的研究结果表明,ZEA 会影响子宫内膜基质细胞的凋亡、迁移和子宫内膜异位症的生长。尽管有报道称子宫内膜癌(EC)患者的血液和组织中存在 ZEA,但 ZEA 诱导的子宫内膜癌促进作用及其机制仍未确定。本研究使用石川细胞来研究 ZEA 对石川细胞迁移、侵袭的影响以及这些事件的内在机制。将石川细胞暴露于低浓度的棣亚乙酸(5、25和125nM)48小时后,对其形态学改变、迁移、侵袭、与上皮-间质转化(EMT)相关的标记物、E-钙粘连蛋白、Vimentin、RhoA/ROCK/PMLC通路激活进行分析。暴露于 ZEA(25nM)会导致形态学改变,如应力纤维、丝状体的形成、细胞粘附力的丧失,以及在细胞外基质包被的多孔膜中迁移和侵袭潜能的显著增加。此外,暴露于 ZEA 还会增加 Rho-GTPase 的活性以及 GEFH1、RhoA、ROCK1+2、CDC42 和 PMLC/MLC 等通路介质的表达。此外,雌激素受体-α(ER-α)和 ROCK 的特异性药理抑制剂可减轻 ZEA 诱导的应力纤维形成以及 E-钙粘蛋白、波形蛋白和 Rho/ROCK/PMLC 通路介质的表达变化。这些研究结果表明,Rho/ROCK/PMLC 信号通路参与了 ZEA 诱导的石川细胞迁移和侵袭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zearalenone promotes endometrial cancer cell migration and invasion via activation of estrogen receptor-mediated Rho/ROCK/PMLC signaling pathway
Zearalenone (ZEA), has emerged as a potential endocrine-disrupting chemical (EDC). Previous results show ZEA effects on endometrial stromal cell apoptosis, migration, and growth of endometriosis. Despite the reported presence of ZEA in Endometrial Cancer (EC) patient's blood and tissues, ZEA-induced EC promotion and its mechanism/s remain elusive. In this study, Ishikawa cells were used to investigate the ZEA effects on Ishikawa cell migration, invasion, and the underlying mechanism involved in these events. Ishikawa cells were exposed to low concentrations of ZEA (5, 25, and 125 nM) for 48 h, and morphological alterations, migration, invasion, markers associated with epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, RhoA/ROCK/PMLC pathway activation were analyzed. ZEA (25 nM) exposure caused morphological alterations like stress fiber, filopodia formation, loss of cell adhesion, and a significant increase in migration and invasive potential in extracellular matrix-coated porous membranes. Moreover, ZEA exposure also increases the Rho-GTPase activity and expression of pathway mediators, GEFH1, RhoA, ROCK1+2, CDC42, and PMLC/MLC. Furthermore, pre-treatment with specific pharmacological inhibitors for Estrogen receptor-alpha (ER-α) and ROCK attenuate the ZEA-induced stress fiber formation and altered expression of E-cadherin, Vimentin, and Rho/ROCK/PMLC pathway mediators. These findings suggest that Rho/ROCK/PMLC signaling pathways are involved in ZEA-induced Ishikawa cell migration and invasion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Chemical Toxicology
Food and Chemical Toxicology 工程技术-毒理学
CiteScore
10.90
自引率
4.70%
发文量
651
审稿时长
31 days
期刊介绍: Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs. The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following: -Adverse physiological/biochemical, or pathological changes induced by specific defined substances -New techniques for assessing potential toxicity, including molecular biology -Mechanisms underlying toxic phenomena -Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability. Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.
期刊最新文献
Update to RIFM fragrance ingredient safety assessment, octyl formate, CAS registry number 112-32-3 Pumpkin seed oil lessens the colchicine-induced altered sex male hormone balance, testicular oxidative status, sperm abnormalities, and collagen deposition in male rats via Caspase3/ Desmin/ PCNA modulation. Lactoferrin alleviates gentamicin-induced acute kidney injury in rats by suppressing ferroptosis: Highlight on ACSL4, SLC7A11, NCOA4, FSP1 pathways and miR-378a-3p, LINC00618 expression. LncRNA TUG1 regulates miR-34a-5p / SIRT6 to participate in benzene-induced hematotoxicity through PI3K / AKT /mTOR signaling pathway. CDKN1A Promotes Cis-induced AKI by Inducing Cytoplasmic ROS Production and Ferroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1