Xueyan Zhang , Changhui Li , Jiaxiang Huang , Qingkun Zeng , Ling Li , Pan Yang , Pengjie Wang , Min Chu , Jie Luo , Hao Zhang
{"title":"基于 UPLC-QTRAP-MS 代谢组学对牦牛、水牛和奶牛初乳中代谢物的表征和比较。","authors":"Xueyan Zhang , Changhui Li , Jiaxiang Huang , Qingkun Zeng , Ling Li , Pan Yang , Pengjie Wang , Min Chu , Jie Luo , Hao Zhang","doi":"10.1016/j.foodchem.2024.141345","DOIUrl":null,"url":null,"abstract":"<div><div>Colostrum from yaks and buffaloes possesses substantial nutritional value, yet the complete array of metabolites within remains insufficiently elucidated. This study scrutinizes the metabolite profiles of yak, buffalo, and cow colostrum utilizing targeted metabolomics paired with ultra-performance liquid chromatography-tandem triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). The analysis detected 362 metabolites across all samples. Furthermore, 63, 77, and 46 differential metabolites were selected between yak and buffalo colostrum, yak and cow colostrum, and buffalo and cow colostrum, respectively. Yak colostrum notably contained higher concentrations of inositol, glycine, and carnitine, whereas buffalo colostrum was distinguished by a substantial presence of primary bile acids, which facilitate fat digestion. These findings offer profound insights into yak and buffalo colostrum, providing critical data to propel advancements in the dairy industry.</div></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and comparison of metabolites in colostrum from yaks, buffaloes, and cows based on UPLC-QTRAP-MS metabolomics\",\"authors\":\"Xueyan Zhang , Changhui Li , Jiaxiang Huang , Qingkun Zeng , Ling Li , Pan Yang , Pengjie Wang , Min Chu , Jie Luo , Hao Zhang\",\"doi\":\"10.1016/j.foodchem.2024.141345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Colostrum from yaks and buffaloes possesses substantial nutritional value, yet the complete array of metabolites within remains insufficiently elucidated. This study scrutinizes the metabolite profiles of yak, buffalo, and cow colostrum utilizing targeted metabolomics paired with ultra-performance liquid chromatography-tandem triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). The analysis detected 362 metabolites across all samples. Furthermore, 63, 77, and 46 differential metabolites were selected between yak and buffalo colostrum, yak and cow colostrum, and buffalo and cow colostrum, respectively. Yak colostrum notably contained higher concentrations of inositol, glycine, and carnitine, whereas buffalo colostrum was distinguished by a substantial presence of primary bile acids, which facilitate fat digestion. These findings offer profound insights into yak and buffalo colostrum, providing critical data to propel advancements in the dairy industry.</div></div>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624029959\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624029959","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Characterization and comparison of metabolites in colostrum from yaks, buffaloes, and cows based on UPLC-QTRAP-MS metabolomics
Colostrum from yaks and buffaloes possesses substantial nutritional value, yet the complete array of metabolites within remains insufficiently elucidated. This study scrutinizes the metabolite profiles of yak, buffalo, and cow colostrum utilizing targeted metabolomics paired with ultra-performance liquid chromatography-tandem triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). The analysis detected 362 metabolites across all samples. Furthermore, 63, 77, and 46 differential metabolites were selected between yak and buffalo colostrum, yak and cow colostrum, and buffalo and cow colostrum, respectively. Yak colostrum notably contained higher concentrations of inositol, glycine, and carnitine, whereas buffalo colostrum was distinguished by a substantial presence of primary bile acids, which facilitate fat digestion. These findings offer profound insights into yak and buffalo colostrum, providing critical data to propel advancements in the dairy industry.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture