Meiyu Chen , Qinbo Jiang , Jiawen Li , Junjie Weng , Tianyi Yan , Yaqin Hu , Xiangyu Wang , Hui Zhang
{"title":"油酸/分离芝麻蛋白/聚(乙烯基)醇核壳纳米纤维的制备与表征:通过乳液电纺丝减轻脂质氧化。","authors":"Meiyu Chen , Qinbo Jiang , Jiawen Li , Junjie Weng , Tianyi Yan , Yaqin Hu , Xiangyu Wang , Hui Zhang","doi":"10.1016/j.foodchem.2024.141349","DOIUrl":null,"url":null,"abstract":"<div><div>Formulated oil-in-water (O/W) emulsions of oleic acid (OA) using sesame protein isolate (SPI) were processed via emulsion electrospinning with poly (vinyl) alcohol (PVA) to fabricate core-shell nanofibers for lipid oxidation prevention. The emulsion droplet size and viscosity increased as the oil volume fraction rose from 5 % to 30 %. The morphology tests and Fourier transform infrared spectroscopy (FTIR) confirmed the uniformity of nanofibers and OA encapsulation with hydrogen bonding. The thermal stability, mechanical properties, and water contact angle (WCA) of the nanofiber films improved with increased OA content. Encapsulation efficiency was 94.76 % and storage stability was maintained for 7 days in 5 % oil fraction nanofibers. The nanofibers showed lower oxidation and superior oxidative resistance to free OA, with the lowest peroxide value (POV, 2.14 mmol/L) and thiobarbituric acid-reactive substances (TBARS, 36.75 μmol/L). In conclusion, the OA/SPI/PVA (PE) core-shell nanofibers via emulsion electrospinning are efficient for fatty acid encapsulation in functional foods.</div></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and characterization of oleic acid/sesame protein isolate/ poly (vinyl) alcohol core-shell nanofibers: Mitigating lipid oxidation by emulsion electrospinning\",\"authors\":\"Meiyu Chen , Qinbo Jiang , Jiawen Li , Junjie Weng , Tianyi Yan , Yaqin Hu , Xiangyu Wang , Hui Zhang\",\"doi\":\"10.1016/j.foodchem.2024.141349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Formulated oil-in-water (O/W) emulsions of oleic acid (OA) using sesame protein isolate (SPI) were processed via emulsion electrospinning with poly (vinyl) alcohol (PVA) to fabricate core-shell nanofibers for lipid oxidation prevention. The emulsion droplet size and viscosity increased as the oil volume fraction rose from 5 % to 30 %. The morphology tests and Fourier transform infrared spectroscopy (FTIR) confirmed the uniformity of nanofibers and OA encapsulation with hydrogen bonding. The thermal stability, mechanical properties, and water contact angle (WCA) of the nanofiber films improved with increased OA content. Encapsulation efficiency was 94.76 % and storage stability was maintained for 7 days in 5 % oil fraction nanofibers. The nanofibers showed lower oxidation and superior oxidative resistance to free OA, with the lowest peroxide value (POV, 2.14 mmol/L) and thiobarbituric acid-reactive substances (TBARS, 36.75 μmol/L). In conclusion, the OA/SPI/PVA (PE) core-shell nanofibers via emulsion electrospinning are efficient for fatty acid encapsulation in functional foods.</div></div>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624029996\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624029996","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
使用芝麻蛋白分离物(SPI)配制的油酸(OA)水包油(O/W)乳液通过乳液电纺丝与聚(乙烯基)醇(PVA)处理,制成了用于防止脂质氧化的核壳纳米纤维。随着油的体积分数从 5% 增加到 30%,乳液液滴的大小和粘度也随之增加。形貌测试和傅立叶变换红外光谱(FTIR)证实了纳米纤维的均匀性和通过氢键封装的 OA。随着 OA 含量的增加,纳米纤维薄膜的热稳定性、机械性能和水接触角(WCA)都有所改善。在含油量为 5% 的纳米纤维中,封装效率为 94.76%,储存稳定性可维持 7 天。纳米纤维对游离 OA 的氧化性和抗氧化性较低,过氧化值(POV,2.14 mmol/L)和硫代巴比妥酸反应物质(TBARS,36.75 μmol/L)最低。总之,通过乳液电纺丝制备的 OA/SPI/PVA (PE) 核壳纳米纤维可有效地将脂肪酸封装在功能食品中。
Fabrication and characterization of oleic acid/sesame protein isolate/ poly (vinyl) alcohol core-shell nanofibers: Mitigating lipid oxidation by emulsion electrospinning
Formulated oil-in-water (O/W) emulsions of oleic acid (OA) using sesame protein isolate (SPI) were processed via emulsion electrospinning with poly (vinyl) alcohol (PVA) to fabricate core-shell nanofibers for lipid oxidation prevention. The emulsion droplet size and viscosity increased as the oil volume fraction rose from 5 % to 30 %. The morphology tests and Fourier transform infrared spectroscopy (FTIR) confirmed the uniformity of nanofibers and OA encapsulation with hydrogen bonding. The thermal stability, mechanical properties, and water contact angle (WCA) of the nanofiber films improved with increased OA content. Encapsulation efficiency was 94.76 % and storage stability was maintained for 7 days in 5 % oil fraction nanofibers. The nanofibers showed lower oxidation and superior oxidative resistance to free OA, with the lowest peroxide value (POV, 2.14 mmol/L) and thiobarbituric acid-reactive substances (TBARS, 36.75 μmol/L). In conclusion, the OA/SPI/PVA (PE) core-shell nanofibers via emulsion electrospinning are efficient for fatty acid encapsulation in functional foods.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture