Zan Gong, Panpan Yuan, Yuqing Gan, Xi Long, Zhiwei Deng, Yalan Tang, Yanjing Yang, Shian Zhong
{"title":"基于等温荧光芒果 II 阵列的单次无标记检测 miRNA 方法。","authors":"Zan Gong, Panpan Yuan, Yuqing Gan, Xi Long, Zhiwei Deng, Yalan Tang, Yanjing Yang, Shian Zhong","doi":"10.1016/j.talanta.2024.126920","DOIUrl":null,"url":null,"abstract":"<p><p>The capability to detect a small number of miRNAs in clinical samples with simplicity, selectivity, and sensitivity is immensely valuable, yet it remains a daunting task. Here, we described a novel Mango II aptamers-based sensor for the one-pot, sensitive and specific detection of miRNAs. Target miRNA-initiated mediated catalyzed hairpin assembly (CHA) would allow for the production of plenty of DNA duplexes and the formation of the complete T7 promoter, motivating the rolling circle transcription (RCT). Then, the subsequent RCT process efficiently generates a huge number of repeating RNA Mango II aptamers, brightened by the incorporation of fluorescent dye TO1-B for miRNA quantification, realizing label-free and high signal-to-background ratio. Moreover, this assay possesses a remarkable ability to confer high selectivity, enabling the distinction of miRNAs among family members with mere 1- or 2- nucleotide (nt) differences. By employing the proposed assay, we have successfully achieved a sensitive evaluation of miR-21 content in diverse cell lines and clinical serum samples. This offers a versatile approach for the sensitive assay of miRNA biomarkers in molecular diagnosis.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126920"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A one-pot isothermal Fluorogenic Mango II arrays-based assay for label-free detection of miRNA.\",\"authors\":\"Zan Gong, Panpan Yuan, Yuqing Gan, Xi Long, Zhiwei Deng, Yalan Tang, Yanjing Yang, Shian Zhong\",\"doi\":\"10.1016/j.talanta.2024.126920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The capability to detect a small number of miRNAs in clinical samples with simplicity, selectivity, and sensitivity is immensely valuable, yet it remains a daunting task. Here, we described a novel Mango II aptamers-based sensor for the one-pot, sensitive and specific detection of miRNAs. Target miRNA-initiated mediated catalyzed hairpin assembly (CHA) would allow for the production of plenty of DNA duplexes and the formation of the complete T7 promoter, motivating the rolling circle transcription (RCT). Then, the subsequent RCT process efficiently generates a huge number of repeating RNA Mango II aptamers, brightened by the incorporation of fluorescent dye TO1-B for miRNA quantification, realizing label-free and high signal-to-background ratio. Moreover, this assay possesses a remarkable ability to confer high selectivity, enabling the distinction of miRNAs among family members with mere 1- or 2- nucleotide (nt) differences. By employing the proposed assay, we have successfully achieved a sensitive evaluation of miR-21 content in diverse cell lines and clinical serum samples. This offers a versatile approach for the sensitive assay of miRNA biomarkers in molecular diagnosis.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"281 \",\"pages\":\"126920\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126920\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126920","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A one-pot isothermal Fluorogenic Mango II arrays-based assay for label-free detection of miRNA.
The capability to detect a small number of miRNAs in clinical samples with simplicity, selectivity, and sensitivity is immensely valuable, yet it remains a daunting task. Here, we described a novel Mango II aptamers-based sensor for the one-pot, sensitive and specific detection of miRNAs. Target miRNA-initiated mediated catalyzed hairpin assembly (CHA) would allow for the production of plenty of DNA duplexes and the formation of the complete T7 promoter, motivating the rolling circle transcription (RCT). Then, the subsequent RCT process efficiently generates a huge number of repeating RNA Mango II aptamers, brightened by the incorporation of fluorescent dye TO1-B for miRNA quantification, realizing label-free and high signal-to-background ratio. Moreover, this assay possesses a remarkable ability to confer high selectivity, enabling the distinction of miRNAs among family members with mere 1- or 2- nucleotide (nt) differences. By employing the proposed assay, we have successfully achieved a sensitive evaluation of miR-21 content in diverse cell lines and clinical serum samples. This offers a versatile approach for the sensitive assay of miRNA biomarkers in molecular diagnosis.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.