Sadia Iram, Khuram Shahzad Ahmad, Irum Shaheen, Ahmed M Aljuwayid, Ghulam Abbas Ashraf
{"title":"野生 A.pindrow royle 化学成分的光谱和色谱研究:用于合成纳米材料的简便叶面燃料。","authors":"Sadia Iram, Khuram Shahzad Ahmad, Irum Shaheen, Ahmed M Aljuwayid, Ghulam Abbas Ashraf","doi":"10.1007/s12013-024-01500-9","DOIUrl":null,"url":null,"abstract":"<p><p>The current work is the first ever report on the functionalization of CoO nanoparticles (NPs) using the bio active constituents of Abies pindrow Royle (A.pindrow) leaves. An efficient phytochemical extraction method was determined by comparing different extraction strategies for extracting the biologically active compounds of A.pindrow leaves. The phytocompounds were noticed via chromatographic techniques; High-performance liquid chromatography (HPLC) as well as the Gas chromatography-mass spectroscopy (GC-MS) followed by spectroscopic analysis that is the Fourier transform infrared spectroscopy (FTIR) along with Ultraviolet-visible spectroscopy (UV-Vis). The reducing properties of the phytochemicals were investigated by efficiently synthesizing metal oxides nanoparticles (CoO NPs) by treating aqueous plant extract with Co(NO<sub>3</sub>). 6H<sub>2</sub>O aqueous complex. The newly synthesized NPs were characterized via X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and field emission-scanning electron microscopy (FE-SEM). Finally, the GCMS, FTIR and UV-Vis identified the A.pindrow leaves biocomponents as capping and reducing mediator of the synthesized CoO nanoparticles. FTIR confirmed the prepartion of CoO NPs as well as the capping and stabilizing agents of A.Pindrow at 2378.31 cm<sup>-1</sup>, 1370.11 cm<sup>-1</sup>, 1260.57 cm<sup>-1</sup>, 937.4 cm<sup>-1</sup> and 607.24 cm<sup>-1</sup> having carboxylic acid, alcohols, aromatics, alkenes, aromatic amines, esters as well as ethers functional groups, flavonols and flavonoids phytochemicals. Moreover GCMS analysis revealed the dominating constituents of A.pindrow leaf extracts are carbohydrates, terpenoids, alkanoids, flavonoids as well as phenols. Furthermore, the antibacterial and bioactive agent, tannis was also observed in aqueous extract. These phytochemicals noticed in this current work, has antioxidant potential, that is why they have shown biomedical applications. The present manipulation, further articulated that, maximum phytochemicals extraction of A. pindrow leaves was illustrated in the aqueous extract as compared to ethyl acetate and ethanol.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic and chromatographic studies of chemical constituents of wild A.pindrow royle: facile foliar fuel for the synthesis of nanomaterials.\",\"authors\":\"Sadia Iram, Khuram Shahzad Ahmad, Irum Shaheen, Ahmed M Aljuwayid, Ghulam Abbas Ashraf\",\"doi\":\"10.1007/s12013-024-01500-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current work is the first ever report on the functionalization of CoO nanoparticles (NPs) using the bio active constituents of Abies pindrow Royle (A.pindrow) leaves. An efficient phytochemical extraction method was determined by comparing different extraction strategies for extracting the biologically active compounds of A.pindrow leaves. The phytocompounds were noticed via chromatographic techniques; High-performance liquid chromatography (HPLC) as well as the Gas chromatography-mass spectroscopy (GC-MS) followed by spectroscopic analysis that is the Fourier transform infrared spectroscopy (FTIR) along with Ultraviolet-visible spectroscopy (UV-Vis). The reducing properties of the phytochemicals were investigated by efficiently synthesizing metal oxides nanoparticles (CoO NPs) by treating aqueous plant extract with Co(NO<sub>3</sub>). 6H<sub>2</sub>O aqueous complex. The newly synthesized NPs were characterized via X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and field emission-scanning electron microscopy (FE-SEM). Finally, the GCMS, FTIR and UV-Vis identified the A.pindrow leaves biocomponents as capping and reducing mediator of the synthesized CoO nanoparticles. FTIR confirmed the prepartion of CoO NPs as well as the capping and stabilizing agents of A.Pindrow at 2378.31 cm<sup>-1</sup>, 1370.11 cm<sup>-1</sup>, 1260.57 cm<sup>-1</sup>, 937.4 cm<sup>-1</sup> and 607.24 cm<sup>-1</sup> having carboxylic acid, alcohols, aromatics, alkenes, aromatic amines, esters as well as ethers functional groups, flavonols and flavonoids phytochemicals. Moreover GCMS analysis revealed the dominating constituents of A.pindrow leaf extracts are carbohydrates, terpenoids, alkanoids, flavonoids as well as phenols. Furthermore, the antibacterial and bioactive agent, tannis was also observed in aqueous extract. These phytochemicals noticed in this current work, has antioxidant potential, that is why they have shown biomedical applications. The present manipulation, further articulated that, maximum phytochemicals extraction of A. pindrow leaves was illustrated in the aqueous extract as compared to ethyl acetate and ethanol.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01500-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01500-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spectroscopic and chromatographic studies of chemical constituents of wild A.pindrow royle: facile foliar fuel for the synthesis of nanomaterials.
The current work is the first ever report on the functionalization of CoO nanoparticles (NPs) using the bio active constituents of Abies pindrow Royle (A.pindrow) leaves. An efficient phytochemical extraction method was determined by comparing different extraction strategies for extracting the biologically active compounds of A.pindrow leaves. The phytocompounds were noticed via chromatographic techniques; High-performance liquid chromatography (HPLC) as well as the Gas chromatography-mass spectroscopy (GC-MS) followed by spectroscopic analysis that is the Fourier transform infrared spectroscopy (FTIR) along with Ultraviolet-visible spectroscopy (UV-Vis). The reducing properties of the phytochemicals were investigated by efficiently synthesizing metal oxides nanoparticles (CoO NPs) by treating aqueous plant extract with Co(NO3). 6H2O aqueous complex. The newly synthesized NPs were characterized via X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and field emission-scanning electron microscopy (FE-SEM). Finally, the GCMS, FTIR and UV-Vis identified the A.pindrow leaves biocomponents as capping and reducing mediator of the synthesized CoO nanoparticles. FTIR confirmed the prepartion of CoO NPs as well as the capping and stabilizing agents of A.Pindrow at 2378.31 cm-1, 1370.11 cm-1, 1260.57 cm-1, 937.4 cm-1 and 607.24 cm-1 having carboxylic acid, alcohols, aromatics, alkenes, aromatic amines, esters as well as ethers functional groups, flavonols and flavonoids phytochemicals. Moreover GCMS analysis revealed the dominating constituents of A.pindrow leaf extracts are carbohydrates, terpenoids, alkanoids, flavonoids as well as phenols. Furthermore, the antibacterial and bioactive agent, tannis was also observed in aqueous extract. These phytochemicals noticed in this current work, has antioxidant potential, that is why they have shown biomedical applications. The present manipulation, further articulated that, maximum phytochemicals extraction of A. pindrow leaves was illustrated in the aqueous extract as compared to ethyl acetate and ethanol.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.