囊性纤维化上皮细胞对 SARS-CoV-2 和甲型流感病毒的不同反应

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY American Journal of Respiratory Cell and Molecular Biology Pub Date : 2024-09-23 DOI:10.1165/rcmb.2024-0213OC
Isabel Pagani, Arianna Venturini, Valeria Capurro, Alessandro Nonis, Silvia Ghezzi, Mariateresa Lena, Beatriz Alcalá-Franco, Fabrizio Gianferro, Daniela Guidone, Carla Colombo, Nicoletta Pedemonte, Alessandra Bragonzi, Cristina Cigana, Luis J V Galietta, Elisa Vicenzi
{"title":"囊性纤维化上皮细胞对 SARS-CoV-2 和甲型流感病毒的不同反应","authors":"Isabel Pagani, Arianna Venturini, Valeria Capurro, Alessandro Nonis, Silvia Ghezzi, Mariateresa Lena, Beatriz Alcalá-Franco, Fabrizio Gianferro, Daniela Guidone, Carla Colombo, Nicoletta Pedemonte, Alessandra Bragonzi, Cristina Cigana, Luis J V Galietta, Elisa Vicenzi","doi":"10.1165/rcmb.2024-0213OC","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from CF and non-CF individuals, including various CF transmembrane conductance regulator (CFTR) mutations, respond to <i>in vitro</i> infection with SARS-CoV-2 variants and SARS-CoV. Comparisons with the Influenza A virus (IAV) were included based on evidence that CF patients experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of CFTR mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-Cove. In contrast, these cells displayed more efficient IAV replication compared to non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of angiotensin converting enzyme 2 (ACE2) receptor nor to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the levels of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct Responses of Cystic Fibrosis Epithelial Cells to SARS-CoV-2 and Influenza A Virus.\",\"authors\":\"Isabel Pagani, Arianna Venturini, Valeria Capurro, Alessandro Nonis, Silvia Ghezzi, Mariateresa Lena, Beatriz Alcalá-Franco, Fabrizio Gianferro, Daniela Guidone, Carla Colombo, Nicoletta Pedemonte, Alessandra Bragonzi, Cristina Cigana, Luis J V Galietta, Elisa Vicenzi\",\"doi\":\"10.1165/rcmb.2024-0213OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from CF and non-CF individuals, including various CF transmembrane conductance regulator (CFTR) mutations, respond to <i>in vitro</i> infection with SARS-CoV-2 variants and SARS-CoV. Comparisons with the Influenza A virus (IAV) were included based on evidence that CF patients experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of CFTR mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-Cove. In contrast, these cells displayed more efficient IAV replication compared to non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of angiotensin converting enzyme 2 (ACE2) receptor nor to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the levels of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2024-0213OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0213OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 大流行凸显了病毒感染对囊性纤维化(CF)患者的影响。最初的观察结果表明,CF人群的COVID-19感染率较低;然而,随后的临床数据表明情况更为复杂。本研究旨在调查囊性纤维化患者和非囊性纤维化患者的支气管上皮细胞(包括各种囊性纤维化跨膜传导调节器(CFTR)突变)对体外感染 SARS-CoV-2 变体和 SARS-CoV 的反应。我们将其与甲型流感病毒(IAV)进行了比较,因为有证据表明,CF 患者感染 IAV 后发病率会升高。我们的研究结果表明,无论 CFTR 突变类型或 SARS-CoV-2 变体,以及 2003 年 SARS-Cove 原型,CF 上皮细胞对 SARS-CoV-2 的复制都有所减少。相反,与非 CF 细胞相比,这些细胞的 IAV 复制效率更高。有趣的是,CF 细胞对 SARS-CoV-2 的易感性降低与血管紧张素转换酶 2(ACE2)受体的表达或 CFTR 功能障碍无关,因为恢复 CFTR 功能的药物治疗并不能使病毒反应正常化。SARS-CoV-2 感染和 CFTR 功能都会影响某些细胞因子和趋化因子的水平,尽管这些影响并不相关。总之,这项研究揭示了 CF 上皮细胞对病毒的独特反应,其特点是对 SARS-CoV-2 等病毒的复制减少,而对 IAV 等其他病毒的易感性增加。这项研究为研究 CF 与病毒的相互作用提供了一个新的视角,强调了进一步研究这些差异背后机制的必要性。本文根据知识共享署名非商业性无衍生品许可 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 条款公开发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinct Responses of Cystic Fibrosis Epithelial Cells to SARS-CoV-2 and Influenza A Virus.

The COVID-19 pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from CF and non-CF individuals, including various CF transmembrane conductance regulator (CFTR) mutations, respond to in vitro infection with SARS-CoV-2 variants and SARS-CoV. Comparisons with the Influenza A virus (IAV) were included based on evidence that CF patients experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of CFTR mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-Cove. In contrast, these cells displayed more efficient IAV replication compared to non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of angiotensin converting enzyme 2 (ACE2) receptor nor to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the levels of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
期刊最新文献
A Single-Cell RNA Sequencing Atlas of the COPD Distal Lung to Predict Cell-Cell Communication. Reexamining the Role of Pulmonary Lipids in the Pathogenesis of Pulmonary Fibrosis. HPS6 Deficiency Leads to Reduced Vacuolar-Type H+-ATPase and Impaired Biogenesis of Lamellar Bodies in Alveolar Type II Cells. Novel Hemodynamic, Vascular Lesion, and Cytokine/Chemokine Differences Regarding Sex in a Pulmonary Arterial Hypertension Model. Novel Small-Molecule ROCK2 Inhibitor GNS-3595 Attenuates Pulmonary Fibrosis in Preclinical Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1