Ben Niu, Benjamin Lee, Lili Wang, Wen Chen, Jeffrey Johnson
{"title":"结合高通量自动多肽图谱和基于蛋白质语言模型的深度学习,准确预测抗体脱酰胺。","authors":"Ben Niu, Benjamin Lee, Lili Wang, Wen Chen, Jeffrey Johnson","doi":"10.3390/antib13030074","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific antibodies are pivotal in therapeutic protein development and have transformed disease treatments across various therapeutic areas. The integrity of therapeutic antibodies, however, is compromised by sequence liabilities, notably deamidation, where asparagine (N) and glutamine (Q) residues undergo chemical degradations. Deamidation negatively impacts the efficacy, stability, and safety of diverse classes of antibodies, thus necessitating the critical need for the early and accurate identification of vulnerable sites. In this article, a comprehensive antibody deamidation-specific dataset (n = 2285) of varied modalities was created by using high-throughput automated peptide mapping followed by supervised machine learning to predict the deamidation propensities, as well as the extents, throughout the entire antibody sequences. We propose a novel chimeric deep learning model, integrating protein language model (pLM)-derived embeddings with local sequence information for enhanced deamidation predictions. Remarkably, this model requires only sequence inputs, eliminating the need for laborious feature engineering. Our approach demonstrates state-of-the-art performance, offering a streamlined workflow for high-throughput automated peptide mapping and deamidation prediction, with the potential of broader applicability to other antibody sequence liabilities.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"13 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417914/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Accurate Prediction of Antibody Deamidations by Combining High-Throughput Automated Peptide Mapping and Protein Language Model-Based Deep Learning.\",\"authors\":\"Ben Niu, Benjamin Lee, Lili Wang, Wen Chen, Jeffrey Johnson\",\"doi\":\"10.3390/antib13030074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific antibodies are pivotal in therapeutic protein development and have transformed disease treatments across various therapeutic areas. The integrity of therapeutic antibodies, however, is compromised by sequence liabilities, notably deamidation, where asparagine (N) and glutamine (Q) residues undergo chemical degradations. Deamidation negatively impacts the efficacy, stability, and safety of diverse classes of antibodies, thus necessitating the critical need for the early and accurate identification of vulnerable sites. In this article, a comprehensive antibody deamidation-specific dataset (n = 2285) of varied modalities was created by using high-throughput automated peptide mapping followed by supervised machine learning to predict the deamidation propensities, as well as the extents, throughout the entire antibody sequences. We propose a novel chimeric deep learning model, integrating protein language model (pLM)-derived embeddings with local sequence information for enhanced deamidation predictions. Remarkably, this model requires only sequence inputs, eliminating the need for laborious feature engineering. Our approach demonstrates state-of-the-art performance, offering a streamlined workflow for high-throughput automated peptide mapping and deamidation prediction, with the potential of broader applicability to other antibody sequence liabilities.</p>\",\"PeriodicalId\":8188,\"journal\":{\"name\":\"Antibodies\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibodies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/antib13030074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib13030074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The Accurate Prediction of Antibody Deamidations by Combining High-Throughput Automated Peptide Mapping and Protein Language Model-Based Deep Learning.
Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific antibodies are pivotal in therapeutic protein development and have transformed disease treatments across various therapeutic areas. The integrity of therapeutic antibodies, however, is compromised by sequence liabilities, notably deamidation, where asparagine (N) and glutamine (Q) residues undergo chemical degradations. Deamidation negatively impacts the efficacy, stability, and safety of diverse classes of antibodies, thus necessitating the critical need for the early and accurate identification of vulnerable sites. In this article, a comprehensive antibody deamidation-specific dataset (n = 2285) of varied modalities was created by using high-throughput automated peptide mapping followed by supervised machine learning to predict the deamidation propensities, as well as the extents, throughout the entire antibody sequences. We propose a novel chimeric deep learning model, integrating protein language model (pLM)-derived embeddings with local sequence information for enhanced deamidation predictions. Remarkably, this model requires only sequence inputs, eliminating the need for laborious feature engineering. Our approach demonstrates state-of-the-art performance, offering a streamlined workflow for high-throughput automated peptide mapping and deamidation prediction, with the potential of broader applicability to other antibody sequence liabilities.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.