Jacob Russin, Sam Whitman McGrath, Ellie Pavlick, Michael J Frank
{"title":"人类的组合方式是元学习的吗?","authors":"Jacob Russin, Sam Whitman McGrath, Ellie Pavlick, Michael J Frank","doi":"10.1017/S0140525X24000189","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies suggest that meta-learning may provide an original solution to an enduring puzzle about whether neural networks can explain compositionality - in particular, by raising the prospect that compositionality can be understood as an emergent property of an inner-loop learning algorithm. We elaborate on this hypothesis and consider its empirical predictions regarding the neural mechanisms and development of human compositionality.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e162"},"PeriodicalIF":16.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is human compositionality meta-learned?\",\"authors\":\"Jacob Russin, Sam Whitman McGrath, Ellie Pavlick, Michael J Frank\",\"doi\":\"10.1017/S0140525X24000189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies suggest that meta-learning may provide an original solution to an enduring puzzle about whether neural networks can explain compositionality - in particular, by raising the prospect that compositionality can be understood as an emergent property of an inner-loop learning algorithm. We elaborate on this hypothesis and consider its empirical predictions regarding the neural mechanisms and development of human compositionality.</p>\",\"PeriodicalId\":8698,\"journal\":{\"name\":\"Behavioral and Brain Sciences\",\"volume\":\"47 \",\"pages\":\"e162\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and Brain Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/S0140525X24000189\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/S0140525X24000189","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Recent studies suggest that meta-learning may provide an original solution to an enduring puzzle about whether neural networks can explain compositionality - in particular, by raising the prospect that compositionality can be understood as an emergent property of an inner-loop learning algorithm. We elaborate on this hypothesis and consider its empirical predictions regarding the neural mechanisms and development of human compositionality.
期刊介绍:
Behavioral and Brain Sciences (BBS) is a highly respected journal that employs an innovative approach called Open Peer Commentary. This format allows for the publication of noteworthy and contentious research from various fields including psychology, neuroscience, behavioral biology, and cognitive science. Each article is accompanied by 20-40 commentaries from experts across these disciplines, as well as a response from the author themselves. This unique setup creates a captivating forum for the exchange of ideas, critical analysis, and the integration of research within the behavioral and brain sciences, spanning topics from molecular neurobiology and artificial intelligence to the philosophy of the mind.