元学习是连接神经网络和符号贝叶斯模型的桥梁。

IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Behavioral and Brain Sciences Pub Date : 2024-09-23 DOI:10.1017/S0140525X24000116
R Thomas McCoy, Thomas L Griffiths
{"title":"元学习是连接神经网络和符号贝叶斯模型的桥梁。","authors":"R Thomas McCoy, Thomas L Griffiths","doi":"10.1017/S0140525X24000116","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-learning is even more broadly relevant to the study of inductive biases than Binz et al. suggest: Its implications go beyond the extensions to rational analysis that they discuss. One noteworthy example is that meta-learning can act as a bridge between the vector representations of neural networks and the symbolic hypothesis spaces used in many Bayesian models.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e155"},"PeriodicalIF":16.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-learning as a bridge between neural networks and symbolic Bayesian models.\",\"authors\":\"R Thomas McCoy, Thomas L Griffiths\",\"doi\":\"10.1017/S0140525X24000116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meta-learning is even more broadly relevant to the study of inductive biases than Binz et al. suggest: Its implications go beyond the extensions to rational analysis that they discuss. One noteworthy example is that meta-learning can act as a bridge between the vector representations of neural networks and the symbolic hypothesis spaces used in many Bayesian models.</p>\",\"PeriodicalId\":8698,\"journal\":{\"name\":\"Behavioral and Brain Sciences\",\"volume\":\"47 \",\"pages\":\"e155\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and Brain Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/S0140525X24000116\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/S0140525X24000116","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

元学习对于归纳偏差研究的意义甚至比宾兹等人所说的更为广泛:元学习的意义超出了他们所讨论的理性分析的范围。一个值得注意的例子是,元学习可以在神经网络的向量表征和许多贝叶斯模型中使用的符号假设空间之间架起一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta-learning as a bridge between neural networks and symbolic Bayesian models.

Meta-learning is even more broadly relevant to the study of inductive biases than Binz et al. suggest: Its implications go beyond the extensions to rational analysis that they discuss. One noteworthy example is that meta-learning can act as a bridge between the vector representations of neural networks and the symbolic hypothesis spaces used in many Bayesian models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioral and Brain Sciences
Behavioral and Brain Sciences 医学-行为科学
CiteScore
1.40
自引率
1.70%
发文量
353
期刊介绍: Behavioral and Brain Sciences (BBS) is a highly respected journal that employs an innovative approach called Open Peer Commentary. This format allows for the publication of noteworthy and contentious research from various fields including psychology, neuroscience, behavioral biology, and cognitive science. Each article is accompanied by 20-40 commentaries from experts across these disciplines, as well as a response from the author themselves. This unique setup creates a captivating forum for the exchange of ideas, critical analysis, and the integration of research within the behavioral and brain sciences, spanning topics from molecular neurobiology and artificial intelligence to the philosophy of the mind.
期刊最新文献
Adopt process-oriented models (if they're more useful). Almost, but not quite there: Research into the emergence of higher-order motivated behavior should fully embrace the dynamic systems approach. Beyond reductionism: Understanding motivational energization requires higher-order constructs. Connecting theories of personality dynamics and mental computational processes. Definitional devils and detail: On identifying motivation as an animating dynamic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1