利用 PAVER 的嵌入表示法解释和可视化通路分析。

IF 1.9 Bioinformation Pub Date : 2024-07-31 eCollection Date: 2024-01-01 DOI:10.6026/973206300200700
William G Ryan V, Ali Sajid Imami, Hunter Ali Sajid, John Vergis, Xiaolu Zhang, Jarek Meller, Rammohan Shukla, Robert McCullumsmith
{"title":"利用 PAVER 的嵌入表示法解释和可视化通路分析。","authors":"William G Ryan V, Ali Sajid Imami, Hunter Ali Sajid, John Vergis, Xiaolu Zhang, Jarek Meller, Rammohan Shukla, Robert McCullumsmith","doi":"10.6026/973206300200700","DOIUrl":null,"url":null,"abstract":"<p><p>Omics studies use large-scale high-throughput data to explain changes underlying different traits or conditions. However, omics analysis often results in long lists of pathways that are difficult to interpret. Therefore, it is of interest to describe a tool named PAVER (Pathway Analysis Visualization with Embedding Representations) for large scale genomic analysis. PAVER curates similar pathways into groups, identifies the pathway most representative of each group, and provides publication-ready intuitive visualizations. PAVER clusters pathways defined by their vector embedding representations and then identifies the term most cosine similar to its respective cluster's average embedding. PAVER can integrate multiple pathway analyses, highlight relevant biological insights, and work with any pathway database.</p>","PeriodicalId":8962,"journal":{"name":"Bioinformation","volume":"20 7","pages":"700-704"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interpreting and visualizing pathway analyses using embedding representations with PAVER.\",\"authors\":\"William G Ryan V, Ali Sajid Imami, Hunter Ali Sajid, John Vergis, Xiaolu Zhang, Jarek Meller, Rammohan Shukla, Robert McCullumsmith\",\"doi\":\"10.6026/973206300200700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Omics studies use large-scale high-throughput data to explain changes underlying different traits or conditions. However, omics analysis often results in long lists of pathways that are difficult to interpret. Therefore, it is of interest to describe a tool named PAVER (Pathway Analysis Visualization with Embedding Representations) for large scale genomic analysis. PAVER curates similar pathways into groups, identifies the pathway most representative of each group, and provides publication-ready intuitive visualizations. PAVER clusters pathways defined by their vector embedding representations and then identifies the term most cosine similar to its respective cluster's average embedding. PAVER can integrate multiple pathway analyses, highlight relevant biological insights, and work with any pathway database.</p>\",\"PeriodicalId\":8962,\"journal\":{\"name\":\"Bioinformation\",\"volume\":\"20 7\",\"pages\":\"700-704\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6026/973206300200700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6026/973206300200700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全局组学研究利用大规模高通量数据来解释不同性状或条件下的变化。然而,omics 分析通常会产生一长串难以解释的通路。因此,我们有兴趣介绍一种名为 PAVER(Pathway Analysis Visualization with Embedding Representations)的工具,用于大规模基因组分析。PAVER 将相似的通路整理成组,识别出每组中最具代表性的通路,并提供可供发表的直观可视化效果。PAVER 根据矢量嵌入表征对通路进行聚类,然后找出与其各自聚类的平均嵌入最相似的余弦项。PAVER 可以整合多种通路分析,突出相关的生物学见解,并与任何通路数据库协同工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpreting and visualizing pathway analyses using embedding representations with PAVER.

Omics studies use large-scale high-throughput data to explain changes underlying different traits or conditions. However, omics analysis often results in long lists of pathways that are difficult to interpret. Therefore, it is of interest to describe a tool named PAVER (Pathway Analysis Visualization with Embedding Representations) for large scale genomic analysis. PAVER curates similar pathways into groups, identifies the pathway most representative of each group, and provides publication-ready intuitive visualizations. PAVER clusters pathways defined by their vector embedding representations and then identifies the term most cosine similar to its respective cluster's average embedding. PAVER can integrate multiple pathway analyses, highlight relevant biological insights, and work with any pathway database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformation
Bioinformation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
自引率
0.00%
发文量
128
期刊最新文献
Probiotics, tetracycline fibres and chlorhexidine gel's effectiveness in treating chronic periodontitis as a supplement to scaling and root planning. Psychological and physical impact of wearing personal protective equipment among health care workers during the COVID-19 pandemic. Seroprevalence of HCV infection among Indian patients with hemodialysis. SHBG and Insulin resistance - Nexus revisited. Volumetric analysis of maxillary sinuses for gender determination: Manual vs.3D segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1