Waldenio Antonio de Araújo, Marcos Gino Fernandes, Paulo Eduardo Degrande, Angélica da Silva Salustino, Domingos Francisco Correia Neto, José Bruno Malaquias
{"title":"探索病虫害综合防治中覆盖作物的影响:免耕棉花生产中害虫和天敌的种群动态。","authors":"Waldenio Antonio de Araújo, Marcos Gino Fernandes, Paulo Eduardo Degrande, Angélica da Silva Salustino, Domingos Francisco Correia Neto, José Bruno Malaquias","doi":"10.1017/S0007485324000452","DOIUrl":null,"url":null,"abstract":"<p><p>Conservation agriculture plays an important role in the sustainability of production systems, notably for globally significant crops such as cotton. This study explores the integration of the no-tillage system (NTS) with integrated pest management (IPM) by incorporating cover crops. The aim is to assess the impact of these living or dead covers on the management of insect populations, the indices diversity of phytophagous insects and natural enemies, and to investigate the population fluctuation of these arthropods, considering a variety of crops in the NTS before and after cotton planting. The trial, conducted over two consecutive cropping seasons in Mato Grosso do Sul State, Brazil, employed a randomised block design with four repetitions. The treatments included cover crops with the highest potential for use in the region, such as millet (<i>Pennisetum glaucum glaucum</i> L.), corn (<i>Zea mays</i> L.), brachiaria (<i>Urochloa ruziziensis</i>), black velvet bean (<i>Stizolobium aterrimum</i>), forage sorghum (<i>Sorghum bicolor</i> L.), and white oats (<i>Avena sativa</i> L.) and a mix of white oats with brachiaria. The results indicated that the black velvet bean stands out as the most effective cover crop, providing the best performance in terms of non-preference to the attack of the evaluated pest insects. Conversely, brachiaria proves to be more susceptible to infestations of <i>Dalbulus maidis</i> (DeLong and Wolcott) (Hemiptera: Cicadellidae), and <i>Diabrotica speciosa</i> (Germar, 1824) (Coleoptera: Chrysomelidae). The study underscores the relevance of the judicious choice of cover crops in IPM and in promoting agricultural biodiversity, creating a strategic tool to enhance the sustainability and efficiency of the cotton production system in the context of the NTS.</p>","PeriodicalId":9370,"journal":{"name":"Bulletin of Entomological Research","volume":" ","pages":"581-590"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the impact of cover crops in integrated pest management: pest and natural enemies population dynamics in no-tillage cotton production.\",\"authors\":\"Waldenio Antonio de Araújo, Marcos Gino Fernandes, Paulo Eduardo Degrande, Angélica da Silva Salustino, Domingos Francisco Correia Neto, José Bruno Malaquias\",\"doi\":\"10.1017/S0007485324000452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conservation agriculture plays an important role in the sustainability of production systems, notably for globally significant crops such as cotton. This study explores the integration of the no-tillage system (NTS) with integrated pest management (IPM) by incorporating cover crops. The aim is to assess the impact of these living or dead covers on the management of insect populations, the indices diversity of phytophagous insects and natural enemies, and to investigate the population fluctuation of these arthropods, considering a variety of crops in the NTS before and after cotton planting. The trial, conducted over two consecutive cropping seasons in Mato Grosso do Sul State, Brazil, employed a randomised block design with four repetitions. The treatments included cover crops with the highest potential for use in the region, such as millet (<i>Pennisetum glaucum glaucum</i> L.), corn (<i>Zea mays</i> L.), brachiaria (<i>Urochloa ruziziensis</i>), black velvet bean (<i>Stizolobium aterrimum</i>), forage sorghum (<i>Sorghum bicolor</i> L.), and white oats (<i>Avena sativa</i> L.) and a mix of white oats with brachiaria. The results indicated that the black velvet bean stands out as the most effective cover crop, providing the best performance in terms of non-preference to the attack of the evaluated pest insects. Conversely, brachiaria proves to be more susceptible to infestations of <i>Dalbulus maidis</i> (DeLong and Wolcott) (Hemiptera: Cicadellidae), and <i>Diabrotica speciosa</i> (Germar, 1824) (Coleoptera: Chrysomelidae). The study underscores the relevance of the judicious choice of cover crops in IPM and in promoting agricultural biodiversity, creating a strategic tool to enhance the sustainability and efficiency of the cotton production system in the context of the NTS.</p>\",\"PeriodicalId\":9370,\"journal\":{\"name\":\"Bulletin of Entomological Research\",\"volume\":\" \",\"pages\":\"581-590\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Entomological Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/S0007485324000452\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0007485324000452","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Exploring the impact of cover crops in integrated pest management: pest and natural enemies population dynamics in no-tillage cotton production.
Conservation agriculture plays an important role in the sustainability of production systems, notably for globally significant crops such as cotton. This study explores the integration of the no-tillage system (NTS) with integrated pest management (IPM) by incorporating cover crops. The aim is to assess the impact of these living or dead covers on the management of insect populations, the indices diversity of phytophagous insects and natural enemies, and to investigate the population fluctuation of these arthropods, considering a variety of crops in the NTS before and after cotton planting. The trial, conducted over two consecutive cropping seasons in Mato Grosso do Sul State, Brazil, employed a randomised block design with four repetitions. The treatments included cover crops with the highest potential for use in the region, such as millet (Pennisetum glaucum glaucum L.), corn (Zea mays L.), brachiaria (Urochloa ruziziensis), black velvet bean (Stizolobium aterrimum), forage sorghum (Sorghum bicolor L.), and white oats (Avena sativa L.) and a mix of white oats with brachiaria. The results indicated that the black velvet bean stands out as the most effective cover crop, providing the best performance in terms of non-preference to the attack of the evaluated pest insects. Conversely, brachiaria proves to be more susceptible to infestations of Dalbulus maidis (DeLong and Wolcott) (Hemiptera: Cicadellidae), and Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae). The study underscores the relevance of the judicious choice of cover crops in IPM and in promoting agricultural biodiversity, creating a strategic tool to enhance the sustainability and efficiency of the cotton production system in the context of the NTS.
期刊介绍:
Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global knowledge of entomology through the generalisation of research findings rather than providing more entomological exceptions. The Bulletin publishes high quality and original research papers, ''critiques'' and review articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, biological control, medicine, animal health and natural resource management. The scope of papers addresses the biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of human and animal diseases. This includes the interactions between species (plants, hosts for parasites, natural enemies and whole communities), novel methodological developments, including molecular biology, in an applied context. The Bulletin does not publish the results of pesticide testing or traditional taxonomic revisions.