{"title":"核密度分布的多分形维谱分析。","authors":"Weihu Ma, Yu-Gang Ma, Wanbing He, Bo Zhou","doi":"10.1063/5.0213717","DOIUrl":null,"url":null,"abstract":"<p><p>We present an integral density method for calculating the multifractal dimension spectrum for nucleon distribution in atomic nuclei. This method is then applied to analyze the non-uniformity of density distribution in several typical types of nuclear matter distributions, including the Woods-Saxon distribution, halo structure, and tetrahedral α clustering. The subsequent discussion provides a comprehensive and detailed exploration of the results obtained. The multifractal dimension spectrum shows a remarkable sensitivity to the density distribution, establishing it as a simple and novel tool for studying the distribution of nucleons in nuclear multibody systems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifractal dimension spectrum analysis for nuclear density distribution.\",\"authors\":\"Weihu Ma, Yu-Gang Ma, Wanbing He, Bo Zhou\",\"doi\":\"10.1063/5.0213717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present an integral density method for calculating the multifractal dimension spectrum for nucleon distribution in atomic nuclei. This method is then applied to analyze the non-uniformity of density distribution in several typical types of nuclear matter distributions, including the Woods-Saxon distribution, halo structure, and tetrahedral α clustering. The subsequent discussion provides a comprehensive and detailed exploration of the results obtained. The multifractal dimension spectrum shows a remarkable sensitivity to the density distribution, establishing it as a simple and novel tool for studying the distribution of nucleons in nuclear multibody systems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0213717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0213717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Multifractal dimension spectrum analysis for nuclear density distribution.
We present an integral density method for calculating the multifractal dimension spectrum for nucleon distribution in atomic nuclei. This method is then applied to analyze the non-uniformity of density distribution in several typical types of nuclear matter distributions, including the Woods-Saxon distribution, halo structure, and tetrahedral α clustering. The subsequent discussion provides a comprehensive and detailed exploration of the results obtained. The multifractal dimension spectrum shows a remarkable sensitivity to the density distribution, establishing it as a simple and novel tool for studying the distribution of nucleons in nuclear multibody systems.