{"title":"昼夜节律紊乱引起的认知障碍涉及海马脑源性神经营养因子减少和淀粉样蛋白-β沉积。","authors":"Yue-Jia Yan, Chang-Quan Huang","doi":"10.1080/07420528.2024.2406545","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythm disruptions have been implicated in numerous health issues, including cognitive decline and the exacerbation of neurodegenerative diseases, like Alzheimer disease (AD). Brain-derived neurotrophic factor (BDNF), vital for neuronal plasticity and cognitive function, is regulated by the circadian clock and exerts protective effects against AD. Thus, we investigated the impact of circadian rhythm disorders (CRDs) on cognitive impairment and explored the underlying neurobiological mechanisms by assessing BDNF and amyloid-β (Aβ) levels. We divided male C57BL/6 mice into three groups (<i>n</i> = 30): a control group (normal 12/12 hour light-dark cycle) and two CRD model groups (3/3 and 22/22 hour cycles, respectively). After 12 weeks, we assessed cognitive functions using the Morris water maze. Following behavioral tests, hippocampal levels of BDNF and Aβ were quantified using enzyme-linked immunosorbent assays. CRDs significantly impaired learning and memory, as evidenced by longer times to reach and find the platform in the CRD groups (<i>p</i> < 0.01). Furthermore, BDNF levels were notably decreased and Aβ levels increased in the CRD groups compared with the control group (<i>p</i> < 0.01). Thus, CRDs elicit cognitive impairment by reducing BDNF levels and increasing Aβ deposition in the hippocampus.</p>","PeriodicalId":10294,"journal":{"name":"Chronobiology International","volume":" ","pages":"1299-1306"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive impairment induced by circadian rhythm disorders involves hippocampal brain-derived neurotrophic factor reduction and amyloid-β deposition.\",\"authors\":\"Yue-Jia Yan, Chang-Quan Huang\",\"doi\":\"10.1080/07420528.2024.2406545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circadian rhythm disruptions have been implicated in numerous health issues, including cognitive decline and the exacerbation of neurodegenerative diseases, like Alzheimer disease (AD). Brain-derived neurotrophic factor (BDNF), vital for neuronal plasticity and cognitive function, is regulated by the circadian clock and exerts protective effects against AD. Thus, we investigated the impact of circadian rhythm disorders (CRDs) on cognitive impairment and explored the underlying neurobiological mechanisms by assessing BDNF and amyloid-β (Aβ) levels. We divided male C57BL/6 mice into three groups (<i>n</i> = 30): a control group (normal 12/12 hour light-dark cycle) and two CRD model groups (3/3 and 22/22 hour cycles, respectively). After 12 weeks, we assessed cognitive functions using the Morris water maze. Following behavioral tests, hippocampal levels of BDNF and Aβ were quantified using enzyme-linked immunosorbent assays. CRDs significantly impaired learning and memory, as evidenced by longer times to reach and find the platform in the CRD groups (<i>p</i> < 0.01). Furthermore, BDNF levels were notably decreased and Aβ levels increased in the CRD groups compared with the control group (<i>p</i> < 0.01). Thus, CRDs elicit cognitive impairment by reducing BDNF levels and increasing Aβ deposition in the hippocampus.</p>\",\"PeriodicalId\":10294,\"journal\":{\"name\":\"Chronobiology International\",\"volume\":\" \",\"pages\":\"1299-1306\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chronobiology International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/07420528.2024.2406545\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronobiology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07420528.2024.2406545","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Cognitive impairment induced by circadian rhythm disorders involves hippocampal brain-derived neurotrophic factor reduction and amyloid-β deposition.
Circadian rhythm disruptions have been implicated in numerous health issues, including cognitive decline and the exacerbation of neurodegenerative diseases, like Alzheimer disease (AD). Brain-derived neurotrophic factor (BDNF), vital for neuronal plasticity and cognitive function, is regulated by the circadian clock and exerts protective effects against AD. Thus, we investigated the impact of circadian rhythm disorders (CRDs) on cognitive impairment and explored the underlying neurobiological mechanisms by assessing BDNF and amyloid-β (Aβ) levels. We divided male C57BL/6 mice into three groups (n = 30): a control group (normal 12/12 hour light-dark cycle) and two CRD model groups (3/3 and 22/22 hour cycles, respectively). After 12 weeks, we assessed cognitive functions using the Morris water maze. Following behavioral tests, hippocampal levels of BDNF and Aβ were quantified using enzyme-linked immunosorbent assays. CRDs significantly impaired learning and memory, as evidenced by longer times to reach and find the platform in the CRD groups (p < 0.01). Furthermore, BDNF levels were notably decreased and Aβ levels increased in the CRD groups compared with the control group (p < 0.01). Thus, CRDs elicit cognitive impairment by reducing BDNF levels and increasing Aβ deposition in the hippocampus.
期刊介绍:
Chronobiology International is the journal of biological and medical rhythm research. It is a transdisciplinary journal focusing on biological rhythm phenomena of all life forms. The journal publishes groundbreaking articles plus authoritative review papers, short communications of work in progress, case studies, and letters to the editor, for example, on genetic and molecular mechanisms of insect, animal and human biological timekeeping, including melatonin and pineal gland rhythms. It also publishes applied topics, for example, shiftwork, chronotypes, and associated personality traits; chronobiology and chronotherapy of sleep, cardiovascular, pulmonary, psychiatric, and other medical conditions. Articles in the journal pertain to basic and applied chronobiology, and to methods, statistics, and instrumentation for biological rhythm study.
Read More: http://informahealthcare.com/page/cbi/Description