Pan-Pan Ye, Bu-Fan Yao, Yang Yang, Xin-Mei Yang, Qian Li, Lin-Lin Song, Ke-Guang Chen, Hai-Yan Zhou, Jin-Yi Shi, Ye-Hui Zhang, Fu-Rong Zhao, Zi-Jia Guo, Shan-Sen Xu, Jia Chen, Aik Han Goh, Shun-Wei Zhu, Yi Zheng, Wei Zhao
{"title":"辛诺瑞韦/利托那韦的药物相互作用:一项开放式、固定序列、两阶段临床试验。","authors":"Pan-Pan Ye, Bu-Fan Yao, Yang Yang, Xin-Mei Yang, Qian Li, Lin-Lin Song, Ke-Guang Chen, Hai-Yan Zhou, Jin-Yi Shi, Ye-Hui Zhang, Fu-Rong Zhao, Zi-Jia Guo, Shan-Sen Xu, Jia Chen, Aik Han Goh, Shun-Wei Zhu, Yi Zheng, Wei Zhao","doi":"10.1016/j.cmi.2024.09.007","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Simnotrelvir is a small-molecule highly specific 3C-like protease inhibitor for anti-SARS-CoV-2 and was approved as a combination drug with ritonavir (simnotrelvir/ritonavir) in China. Simnotrelvir is a substrate of cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), and a weak inhibitor of CYP3A. Ritonavir is a substrate and inhibitor of CYP3A and an inhibitor of P-gp. Hence, the drug-drug interaction potential of simnotrelvir/ritonavir should be investigated.</p><p><strong>Methods: </strong>This drug-drug interaction study was an open-label, fixed-sequence, two-period phase I clinical trial in Chinese healthy adult subjects, divided into three cohorts, including simnotrelvir/ritonavir co-administrated with a strong CYP3A and P-gp inhibitor (itraconazole) and inducer (rifampicin), and with a specific CYP3A substrate (midazolam).</p><p><strong>Results: </strong>The results demonstrated that compared with administration of simnotrelvir/ritonavir alone, the co-administration with itraconazole increased the geometric least-square mean ratio (GMR) of the expose (area under the plasma concentration-time curve from time zero to the lowest detectable plasma concentration [AUC<sub>0-t</sub>]) of simnotrelvir by 25% (GMR 125%, 90% CI 114-137%), whereas co-administration with rifampicin significantly decreased the AUC<sub>0-t</sub> of simnotrelvir by 81.5% (GMR 18.5%, 90% CI 16.4-20.9%). Notably, simnotrelvir/ritonavir increased the AUC<sub>0-t</sub> of midazolam by 16.69-fold (GMR 1769%, 90% CI 1551-2018%). The co-administration of simnotrelvir/ritonavir and rifampicin caused the increased amount and severity of treatment-emergent adverse events, especially hepatotoxicity.</p><p><strong>Discussion: </strong>The co-administration of simnotrelvir/ritonavir with CYP3A and P-gp inhibitors can be safely used, whereas the co-administration with CYP3A and P-gp strong inducer should be avoided to minimize the risk of under-exposure. Co-administration of midazolam with simnotrelvir/ritonavir increased systemic exposure of midazolam.</p><p><strong>Clinicaltrials: </strong>gov Identifier: NCT05665647.</p>","PeriodicalId":10444,"journal":{"name":"Clinical Microbiology and Infection","volume":" ","pages":"101-107"},"PeriodicalIF":10.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug-drug interactions of simnotrelvir/ritonavir: an open-label, fixed-sequence, two-period clinical trial.\",\"authors\":\"Pan-Pan Ye, Bu-Fan Yao, Yang Yang, Xin-Mei Yang, Qian Li, Lin-Lin Song, Ke-Guang Chen, Hai-Yan Zhou, Jin-Yi Shi, Ye-Hui Zhang, Fu-Rong Zhao, Zi-Jia Guo, Shan-Sen Xu, Jia Chen, Aik Han Goh, Shun-Wei Zhu, Yi Zheng, Wei Zhao\",\"doi\":\"10.1016/j.cmi.2024.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Simnotrelvir is a small-molecule highly specific 3C-like protease inhibitor for anti-SARS-CoV-2 and was approved as a combination drug with ritonavir (simnotrelvir/ritonavir) in China. Simnotrelvir is a substrate of cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), and a weak inhibitor of CYP3A. Ritonavir is a substrate and inhibitor of CYP3A and an inhibitor of P-gp. Hence, the drug-drug interaction potential of simnotrelvir/ritonavir should be investigated.</p><p><strong>Methods: </strong>This drug-drug interaction study was an open-label, fixed-sequence, two-period phase I clinical trial in Chinese healthy adult subjects, divided into three cohorts, including simnotrelvir/ritonavir co-administrated with a strong CYP3A and P-gp inhibitor (itraconazole) and inducer (rifampicin), and with a specific CYP3A substrate (midazolam).</p><p><strong>Results: </strong>The results demonstrated that compared with administration of simnotrelvir/ritonavir alone, the co-administration with itraconazole increased the geometric least-square mean ratio (GMR) of the expose (area under the plasma concentration-time curve from time zero to the lowest detectable plasma concentration [AUC<sub>0-t</sub>]) of simnotrelvir by 25% (GMR 125%, 90% CI 114-137%), whereas co-administration with rifampicin significantly decreased the AUC<sub>0-t</sub> of simnotrelvir by 81.5% (GMR 18.5%, 90% CI 16.4-20.9%). Notably, simnotrelvir/ritonavir increased the AUC<sub>0-t</sub> of midazolam by 16.69-fold (GMR 1769%, 90% CI 1551-2018%). The co-administration of simnotrelvir/ritonavir and rifampicin caused the increased amount and severity of treatment-emergent adverse events, especially hepatotoxicity.</p><p><strong>Discussion: </strong>The co-administration of simnotrelvir/ritonavir with CYP3A and P-gp inhibitors can be safely used, whereas the co-administration with CYP3A and P-gp strong inducer should be avoided to minimize the risk of under-exposure. Co-administration of midazolam with simnotrelvir/ritonavir increased systemic exposure of midazolam.</p><p><strong>Clinicaltrials: </strong>gov Identifier: NCT05665647.</p>\",\"PeriodicalId\":10444,\"journal\":{\"name\":\"Clinical Microbiology and Infection\",\"volume\":\" \",\"pages\":\"101-107\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Microbiology and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmi.2024.09.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Microbiology and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cmi.2024.09.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Drug-drug interactions of simnotrelvir/ritonavir: an open-label, fixed-sequence, two-period clinical trial.
Objectives: Simnotrelvir is a small-molecule highly specific 3C-like protease inhibitor for anti-SARS-CoV-2 and was approved as a combination drug with ritonavir (simnotrelvir/ritonavir) in China. Simnotrelvir is a substrate of cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), and a weak inhibitor of CYP3A. Ritonavir is a substrate and inhibitor of CYP3A and an inhibitor of P-gp. Hence, the drug-drug interaction potential of simnotrelvir/ritonavir should be investigated.
Methods: This drug-drug interaction study was an open-label, fixed-sequence, two-period phase I clinical trial in Chinese healthy adult subjects, divided into three cohorts, including simnotrelvir/ritonavir co-administrated with a strong CYP3A and P-gp inhibitor (itraconazole) and inducer (rifampicin), and with a specific CYP3A substrate (midazolam).
Results: The results demonstrated that compared with administration of simnotrelvir/ritonavir alone, the co-administration with itraconazole increased the geometric least-square mean ratio (GMR) of the expose (area under the plasma concentration-time curve from time zero to the lowest detectable plasma concentration [AUC0-t]) of simnotrelvir by 25% (GMR 125%, 90% CI 114-137%), whereas co-administration with rifampicin significantly decreased the AUC0-t of simnotrelvir by 81.5% (GMR 18.5%, 90% CI 16.4-20.9%). Notably, simnotrelvir/ritonavir increased the AUC0-t of midazolam by 16.69-fold (GMR 1769%, 90% CI 1551-2018%). The co-administration of simnotrelvir/ritonavir and rifampicin caused the increased amount and severity of treatment-emergent adverse events, especially hepatotoxicity.
Discussion: The co-administration of simnotrelvir/ritonavir with CYP3A and P-gp inhibitors can be safely used, whereas the co-administration with CYP3A and P-gp strong inducer should be avoided to minimize the risk of under-exposure. Co-administration of midazolam with simnotrelvir/ritonavir increased systemic exposure of midazolam.
期刊介绍:
Clinical Microbiology and Infection (CMI) is a monthly journal published by the European Society of Clinical Microbiology and Infectious Diseases. It focuses on peer-reviewed papers covering basic and applied research in microbiology, infectious diseases, virology, parasitology, immunology, and epidemiology as they relate to therapy and diagnostics.