SELENBP1 通过降低结直肠癌中 HIF1α 的表达抑制沃伯格效应和肿瘤生长

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-12 DOI:10.2174/0115680096320837240806172245
Tao Song, Xiaotian Zhang, Jun Ren, Zhiqing Hu, Xin Wang, Gengming Niu
{"title":"SELENBP1 通过降低结直肠癌中 HIF1α 的表达抑制沃伯格效应和肿瘤生长","authors":"Tao Song, Xiaotian Zhang, Jun Ren, Zhiqing Hu, Xin Wang, Gengming Niu","doi":"10.2174/0115680096320837240806172245","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Colorectal cancer (CRC) is experiencing a significant increase in both incidence and mortality rates globally. The expression of Selenium-binding protein 1 (SELENBP1) has been reported to be notably downregulated in various malignancies, yet its biological functions and cellular mechanisms in CRC remain incompletely understood.</p><p><strong>Method: </strong>In our investigation, we observed the downregulation of SELENBP1 in CRC tissues through quantitative real-time PCR and western blotting and identified a positive correlation between higher SELENBP1 expression and improved survival prognosis using Kaplan-Meier survival analysis. Through loss-of-function and gain-of-function studies, we demonstrated the tumor-suppressive roles of SELENBP1 in CRC, supported by results from both in vitro and in vivo experiments. Furthermore, we uncovered the pivotal functions of SELENBP1 in suppressing aerobic glycolysis in CRC cells by regulating glucose uptake, lactate generation, and extracellular acidification rate.</p><p><strong>Result: </strong>At a mechanistic level, we found that SELENBP1 inhibits the expression of the key glycolytic modulator hypoxia-inducible factor 1 subunit alpha (HIF1α), and the inhibition of glycolysis by SELENBP1 can be reversed by ectopic expression of HIF1α. Therefore, our study highlights the potential of SELENBP1 as a promising target for CRC therapy, given its significant impact on tumor suppression and reprogrammed glucose metabolism.</p><p><strong>Conclusion: </strong>These findings contribute to a deeper understanding of the molecular mechanisms underlying CRC progression and may pave the way for the development of targeted therapies for this challenging disease.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SELENBP1 Inhibits the Warburg Effect and Tumor Growth by Reducing the HIF1α Expression in Colorectal Cancer.\",\"authors\":\"Tao Song, Xiaotian Zhang, Jun Ren, Zhiqing Hu, Xin Wang, Gengming Niu\",\"doi\":\"10.2174/0115680096320837240806172245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Colorectal cancer (CRC) is experiencing a significant increase in both incidence and mortality rates globally. The expression of Selenium-binding protein 1 (SELENBP1) has been reported to be notably downregulated in various malignancies, yet its biological functions and cellular mechanisms in CRC remain incompletely understood.</p><p><strong>Method: </strong>In our investigation, we observed the downregulation of SELENBP1 in CRC tissues through quantitative real-time PCR and western blotting and identified a positive correlation between higher SELENBP1 expression and improved survival prognosis using Kaplan-Meier survival analysis. Through loss-of-function and gain-of-function studies, we demonstrated the tumor-suppressive roles of SELENBP1 in CRC, supported by results from both in vitro and in vivo experiments. Furthermore, we uncovered the pivotal functions of SELENBP1 in suppressing aerobic glycolysis in CRC cells by regulating glucose uptake, lactate generation, and extracellular acidification rate.</p><p><strong>Result: </strong>At a mechanistic level, we found that SELENBP1 inhibits the expression of the key glycolytic modulator hypoxia-inducible factor 1 subunit alpha (HIF1α), and the inhibition of glycolysis by SELENBP1 can be reversed by ectopic expression of HIF1α. Therefore, our study highlights the potential of SELENBP1 as a promising target for CRC therapy, given its significant impact on tumor suppression and reprogrammed glucose metabolism.</p><p><strong>Conclusion: </strong>These findings contribute to a deeper understanding of the molecular mechanisms underlying CRC progression and may pave the way for the development of targeted therapies for this challenging disease.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680096320837240806172245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096320837240806172245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

导言:全球结直肠癌(CRC)的发病率和死亡率都在显著上升。据报道,硒结合蛋白 1(SELENBP1)的表达在各种恶性肿瘤中明显下调,但其在 CRC 中的生物学功能和细胞机制仍不完全清楚:在我们的研究中,我们通过实时定量 PCR 和 Western 印迹观察到 SELENBP1 在 CRC 组织中的下调,并通过 Kaplan-Meier 生存分析发现 SELENBP1 的高表达与生存预后的改善呈正相关。通过功能缺失和功能增益研究,我们证实了 SELENBP1 在 CRC 中的肿瘤抑制作用,体外和体内实验的结果也支持了这一点。此外,我们还发现了SELENBP1通过调节葡萄糖摄取、乳酸生成和细胞外酸化率来抑制CRC细胞有氧糖酵解的关键功能:结果:在机理层面上,我们发现SELENBP1抑制了关键糖酵解调节因子缺氧诱导因子1亚基α(HIF1α)的表达,而SELENBP1对糖酵解的抑制作用可通过异位表达HIF1α逆转。因此,我们的研究强调了SELENBP1作为CRC治疗靶点的潜力,因为它对肿瘤抑制和葡萄糖代谢重编程有重大影响:这些发现有助于加深对 CRC 进展的分子机制的理解,并可能为开发治疗这种具有挑战性疾病的靶向疗法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SELENBP1 Inhibits the Warburg Effect and Tumor Growth by Reducing the HIF1α Expression in Colorectal Cancer.

Introduction: Colorectal cancer (CRC) is experiencing a significant increase in both incidence and mortality rates globally. The expression of Selenium-binding protein 1 (SELENBP1) has been reported to be notably downregulated in various malignancies, yet its biological functions and cellular mechanisms in CRC remain incompletely understood.

Method: In our investigation, we observed the downregulation of SELENBP1 in CRC tissues through quantitative real-time PCR and western blotting and identified a positive correlation between higher SELENBP1 expression and improved survival prognosis using Kaplan-Meier survival analysis. Through loss-of-function and gain-of-function studies, we demonstrated the tumor-suppressive roles of SELENBP1 in CRC, supported by results from both in vitro and in vivo experiments. Furthermore, we uncovered the pivotal functions of SELENBP1 in suppressing aerobic glycolysis in CRC cells by regulating glucose uptake, lactate generation, and extracellular acidification rate.

Result: At a mechanistic level, we found that SELENBP1 inhibits the expression of the key glycolytic modulator hypoxia-inducible factor 1 subunit alpha (HIF1α), and the inhibition of glycolysis by SELENBP1 can be reversed by ectopic expression of HIF1α. Therefore, our study highlights the potential of SELENBP1 as a promising target for CRC therapy, given its significant impact on tumor suppression and reprogrammed glucose metabolism.

Conclusion: These findings contribute to a deeper understanding of the molecular mechanisms underlying CRC progression and may pave the way for the development of targeted therapies for this challenging disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1