{"title":"在压力控制通气过程中对新型高压氧呼吸机进行评估。","authors":"Cong Wang, Qiuhong Yu, Yaling Liu, Ziqi Ren, Ying Liu, Lianbi Xue","doi":"10.28920/dhm54.3.212-216","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The stability of a new hyperbaric ventilator (Shangrila590, Beijing Aeonmed Company, Beijing, China) at different clinically relevant pressures in a hyperbaric chamber during pressure-controlled ventilation (PCV) was investigated.</p><p><strong>Methods: </strong>The ventilator was connected to a test lung in the multiplace hyperbaric chamber. The inspiratory pressure (PI) of the ventilator was set to 1.0, 1.5, 2.0, 2.5 and 3.0 kPa (approximately 10, 15, 20, 25 and 30 cmH₂O). The compliance and resistance of the test lung were set to 200 mL·kPa⁻¹ and 2 kPa·L⁻¹·s⁻¹, respectively. Experiments were conducted at 101, 203 and 284 kPa ambient pressure (1.0, 2.0 and 2.8 atmospheres absolute respectively). At each of the 5 PI values, the tidal volume (VT), peak inspiratory pressure (Ppeak) and peak inspiratory flow (Fpeak) displayed by the ventilator and the test lung were recorded for 20 cycles. Test lung data were considered the actual ventilation values. The ventilation data were compared among the three groups to evaluate the stability of the ventilator.</p><p><strong>Results: </strong>At every PI, the Ppeak detected by the ventilator decreased slightly with increasing ambient pressure. The Fpeak values measured by the test lung decreased substantially as the ambient pressure increased. Nevertheless, the reduction in VT at 284 kPa and PI 30 cmH₂O (compared to performance at 101 kPa) was comparatively small (approximately 60 ml).</p><p><strong>Conclusions: </strong>In PCV mode this ventilator provided relatively stable VT across clinically relevant PI values to ambient pressures as high as 284 kPa. However, because Fpeak decreases at higher ambient pressure, some user adjustment might be necessary for precise VT maintenance during clinical use at higher PIs and ambient pressures.</p>","PeriodicalId":11296,"journal":{"name":"Diving and hyperbaric medicine","volume":"54 3","pages":"212-216"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a new hyperbaric oxygen ventilator during pressure-controlled ventilation.\",\"authors\":\"Cong Wang, Qiuhong Yu, Yaling Liu, Ziqi Ren, Ying Liu, Lianbi Xue\",\"doi\":\"10.28920/dhm54.3.212-216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The stability of a new hyperbaric ventilator (Shangrila590, Beijing Aeonmed Company, Beijing, China) at different clinically relevant pressures in a hyperbaric chamber during pressure-controlled ventilation (PCV) was investigated.</p><p><strong>Methods: </strong>The ventilator was connected to a test lung in the multiplace hyperbaric chamber. The inspiratory pressure (PI) of the ventilator was set to 1.0, 1.5, 2.0, 2.5 and 3.0 kPa (approximately 10, 15, 20, 25 and 30 cmH₂O). The compliance and resistance of the test lung were set to 200 mL·kPa⁻¹ and 2 kPa·L⁻¹·s⁻¹, respectively. Experiments were conducted at 101, 203 and 284 kPa ambient pressure (1.0, 2.0 and 2.8 atmospheres absolute respectively). At each of the 5 PI values, the tidal volume (VT), peak inspiratory pressure (Ppeak) and peak inspiratory flow (Fpeak) displayed by the ventilator and the test lung were recorded for 20 cycles. Test lung data were considered the actual ventilation values. The ventilation data were compared among the three groups to evaluate the stability of the ventilator.</p><p><strong>Results: </strong>At every PI, the Ppeak detected by the ventilator decreased slightly with increasing ambient pressure. The Fpeak values measured by the test lung decreased substantially as the ambient pressure increased. Nevertheless, the reduction in VT at 284 kPa and PI 30 cmH₂O (compared to performance at 101 kPa) was comparatively small (approximately 60 ml).</p><p><strong>Conclusions: </strong>In PCV mode this ventilator provided relatively stable VT across clinically relevant PI values to ambient pressures as high as 284 kPa. However, because Fpeak decreases at higher ambient pressure, some user adjustment might be necessary for precise VT maintenance during clinical use at higher PIs and ambient pressures.</p>\",\"PeriodicalId\":11296,\"journal\":{\"name\":\"Diving and hyperbaric medicine\",\"volume\":\"54 3\",\"pages\":\"212-216\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diving and hyperbaric medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.28920/dhm54.3.212-216\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diving and hyperbaric medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.28920/dhm54.3.212-216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Evaluation of a new hyperbaric oxygen ventilator during pressure-controlled ventilation.
Introduction: The stability of a new hyperbaric ventilator (Shangrila590, Beijing Aeonmed Company, Beijing, China) at different clinically relevant pressures in a hyperbaric chamber during pressure-controlled ventilation (PCV) was investigated.
Methods: The ventilator was connected to a test lung in the multiplace hyperbaric chamber. The inspiratory pressure (PI) of the ventilator was set to 1.0, 1.5, 2.0, 2.5 and 3.0 kPa (approximately 10, 15, 20, 25 and 30 cmH₂O). The compliance and resistance of the test lung were set to 200 mL·kPa⁻¹ and 2 kPa·L⁻¹·s⁻¹, respectively. Experiments were conducted at 101, 203 and 284 kPa ambient pressure (1.0, 2.0 and 2.8 atmospheres absolute respectively). At each of the 5 PI values, the tidal volume (VT), peak inspiratory pressure (Ppeak) and peak inspiratory flow (Fpeak) displayed by the ventilator and the test lung were recorded for 20 cycles. Test lung data were considered the actual ventilation values. The ventilation data were compared among the three groups to evaluate the stability of the ventilator.
Results: At every PI, the Ppeak detected by the ventilator decreased slightly with increasing ambient pressure. The Fpeak values measured by the test lung decreased substantially as the ambient pressure increased. Nevertheless, the reduction in VT at 284 kPa and PI 30 cmH₂O (compared to performance at 101 kPa) was comparatively small (approximately 60 ml).
Conclusions: In PCV mode this ventilator provided relatively stable VT across clinically relevant PI values to ambient pressures as high as 284 kPa. However, because Fpeak decreases at higher ambient pressure, some user adjustment might be necessary for precise VT maintenance during clinical use at higher PIs and ambient pressures.
期刊介绍:
Diving and Hyperbaric Medicine (DHM) is the combined journal of the South Pacific Underwater Medicine Society (SPUMS) and the European Underwater and Baromedical Society (EUBS). It seeks to publish papers of high quality on all aspects of diving and hyperbaric medicine of interest to diving medical professionals, physicians of all specialties, scientists, members of the diving and hyperbaric industries, and divers. Manuscripts must be offered exclusively to Diving and Hyperbaric Medicine, unless clearly authenticated copyright exemption accompaniesthe manuscript. All manuscripts will be subject to peer review. Accepted contributions will also be subject to editing.