低温等离子体预处理对聚乙烯薄膜生物降解性的影响。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Technology Pub Date : 2024-09-21 DOI:10.1080/09593330.2024.2405662
Yue Yang, Xiaoli Zhou, Zixun Zhou, Xiujuan Qian, Jie Zhou, Minjiao Chen, Weiliang Dong, Min Jiang
{"title":"低温等离子体预处理对聚乙烯薄膜生物降解性的影响。","authors":"Yue Yang, Xiaoli Zhou, Zixun Zhou, Xiujuan Qian, Jie Zhou, Minjiao Chen, Weiliang Dong, Min Jiang","doi":"10.1080/09593330.2024.2405662","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing focus on environmental friendliness and sustainable development, extensive research has been conducted on the biodegradation of plastics. The non-hydrolyzable, highly hydrophobic, and high-molecular-weight properties of polyethylene (PE) pose challenges for cell interaction and biodegradation of PE substrates. To overcome these obstacles, PE films were treated with low-temperature plasma before biodegradation. The morphology, surface chemistry, molecular weight, and weight loss of PE films after plasma treatment and biodegradation were studied. The plasma treatment decreased the surface water contact angle, formed C-O and C = O groups, and decreased the molecular weight of PE films. With the increased pretreatment time, the biodegradation efficiency rose to 2.6% from 0.63% after 20 days of incubation. The mechanism was proposed that the surface oxygen-containing groups formed by plasma treatment can facilitate the bio-accessibility and be further decomposed and utilised by the microbes. This study provided an effective and rapid pretreatment strategy for improving biodegradation of PE.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of low-temperature plasma pretreatment on the biodegradability of polyethylene films.\",\"authors\":\"Yue Yang, Xiaoli Zhou, Zixun Zhou, Xiujuan Qian, Jie Zhou, Minjiao Chen, Weiliang Dong, Min Jiang\",\"doi\":\"10.1080/09593330.2024.2405662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing focus on environmental friendliness and sustainable development, extensive research has been conducted on the biodegradation of plastics. The non-hydrolyzable, highly hydrophobic, and high-molecular-weight properties of polyethylene (PE) pose challenges for cell interaction and biodegradation of PE substrates. To overcome these obstacles, PE films were treated with low-temperature plasma before biodegradation. The morphology, surface chemistry, molecular weight, and weight loss of PE films after plasma treatment and biodegradation were studied. The plasma treatment decreased the surface water contact angle, formed C-O and C = O groups, and decreased the molecular weight of PE films. With the increased pretreatment time, the biodegradation efficiency rose to 2.6% from 0.63% after 20 days of incubation. The mechanism was proposed that the surface oxygen-containing groups formed by plasma treatment can facilitate the bio-accessibility and be further decomposed and utilised by the microbes. This study provided an effective and rapid pretreatment strategy for improving biodegradation of PE.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2405662\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2405662","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着对环境友好和可持续发展的日益关注,人们对塑料的生物降解进行了广泛的研究。聚乙烯(PE)具有不可水解、高度疏水和高分子量的特性,这给聚乙烯基底的细胞相互作用和生物降解带来了挑战。为了克服这些障碍,在生物降解前用低温等离子体处理聚乙烯薄膜。研究了等离子处理和生物降解后聚乙烯薄膜的形态、表面化学、分子量和重量损失。等离子体处理降低了聚乙烯薄膜的表面水接触角,形成了 C-O 和 C = O 基团,并降低了聚乙烯薄膜的分子量。随着预处理时间的延长,培养 20 天后的生物降解效率从 0.63% 上升到 2.6%。其机理是等离子体处理形成的表面含氧基团可促进生物进入,并被微生物进一步分解和利用。这项研究为改善聚乙烯的生物降解提供了一种有效而快速的预处理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of low-temperature plasma pretreatment on the biodegradability of polyethylene films.

With the increasing focus on environmental friendliness and sustainable development, extensive research has been conducted on the biodegradation of plastics. The non-hydrolyzable, highly hydrophobic, and high-molecular-weight properties of polyethylene (PE) pose challenges for cell interaction and biodegradation of PE substrates. To overcome these obstacles, PE films were treated with low-temperature plasma before biodegradation. The morphology, surface chemistry, molecular weight, and weight loss of PE films after plasma treatment and biodegradation were studied. The plasma treatment decreased the surface water contact angle, formed C-O and C = O groups, and decreased the molecular weight of PE films. With the increased pretreatment time, the biodegradation efficiency rose to 2.6% from 0.63% after 20 days of incubation. The mechanism was proposed that the surface oxygen-containing groups formed by plasma treatment can facilitate the bio-accessibility and be further decomposed and utilised by the microbes. This study provided an effective and rapid pretreatment strategy for improving biodegradation of PE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
期刊最新文献
Enhanced phosphorus bioavailability and reduced water leachability in dairy manure through hydrothermal carbonization: effect of processing temperature and CaO additive. Recovery of keratin from feather meal: a new route to valorize an agro-industrial co-product. Benzo(a)pyrene degradation by the interaction of Aspergillus brasilensis and Sphigobacterium spiritovorum in wastewater: optimisation and kinetic response. Commercial dexamethasone degradation by heterogeneous sono/photo-Fenton process using iron zeolite catalyst by an electrodeposition method. Response surface optimisation for corona discharge treatment of nicosulfuron in water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1