结直肠癌建模的进展和挑战以及对新药研发的影响。

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Expert Opinion on Drug Discovery Pub Date : 2024-09-16 DOI:10.1080/17460441.2024.2404238
Natália Teixeira, Ana Baião, Sofia Dias, Bruno Sarmento
{"title":"结直肠癌建模的进展和挑战以及对新药研发的影响。","authors":"Natália Teixeira, Ana Baião, Sofia Dias, Bruno Sarmento","doi":"10.1080/17460441.2024.2404238","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide. This disease is complex and heterogeneous, influenced by a variety of genetic, epigenetic, and environmental factors that drive CRC initiation and progression. Despite advances in therapeutic strategies, the five-year survival rate for metastatic CRC is alarmingly low. Traditional two-dimensional (2D) cell culture systems have been the foundation of cancer research, but their inability to replicate the complex tumor microenvironment (TME) limits their effectiveness.</p><p><strong>Areas covered: </strong>This paper explores the evolution of CRC models, starting with the limitations of traditional 2D cell culture systems and the significant advancements offered by 3D models. Additionally, it highlights 3D bioprinting and on-chip CRC models, which have enhanced the ability to mimic in vivo conditions.</p><p><strong>Expert opinion: </strong>The transition to advanced 3D models represents a pivotal shift in CRC research, offering considerable improvements over the established 2D models. These models hold promise for the development of patient-specific models that better mimic in vivo conditions. However, the inherent complexity of CRC continues to pose challenges in developing models that can fully capture the disease's multifaceted nature. This complexity and high costs associated with these technologies, along with the need for standardized protocols, pose significant challenges to their widespread adoption.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-10"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The progress and challenges in modeling colorectal cancer and the impact on novel drug discovery.\",\"authors\":\"Natália Teixeira, Ana Baião, Sofia Dias, Bruno Sarmento\",\"doi\":\"10.1080/17460441.2024.2404238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide. This disease is complex and heterogeneous, influenced by a variety of genetic, epigenetic, and environmental factors that drive CRC initiation and progression. Despite advances in therapeutic strategies, the five-year survival rate for metastatic CRC is alarmingly low. Traditional two-dimensional (2D) cell culture systems have been the foundation of cancer research, but their inability to replicate the complex tumor microenvironment (TME) limits their effectiveness.</p><p><strong>Areas covered: </strong>This paper explores the evolution of CRC models, starting with the limitations of traditional 2D cell culture systems and the significant advancements offered by 3D models. Additionally, it highlights 3D bioprinting and on-chip CRC models, which have enhanced the ability to mimic in vivo conditions.</p><p><strong>Expert opinion: </strong>The transition to advanced 3D models represents a pivotal shift in CRC research, offering considerable improvements over the established 2D models. These models hold promise for the development of patient-specific models that better mimic in vivo conditions. However, the inherent complexity of CRC continues to pose challenges in developing models that can fully capture the disease's multifaceted nature. This complexity and high costs associated with these technologies, along with the need for standardized protocols, pose significant challenges to their widespread adoption.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2024.2404238\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2404238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

导言:结直肠癌(CRC)仍然是全球癌症相关发病率和死亡率的主要原因之一。这种疾病复杂多变,受多种遗传、表观遗传和环境因素的影响,导致 CRC 的发生和发展。尽管治疗策略不断进步,但转移性 CRC 的五年存活率却低得惊人。传统的二维(2D)细胞培养系统一直是癌症研究的基础,但由于无法复制复杂的肿瘤微环境(TME),限制了其有效性:本文从传统二维细胞培养系统的局限性和三维模型带来的重大进展入手,探讨了 CRC 模型的演变。此外,本文还重点介绍了三维生物打印和芯片 CRC 模型,这些模型提高了模拟体内条件的能力:向先进的三维模型过渡代表了 CRC 研究的关键转变,与既有的二维模型相比有了很大改进。这些模型为开发能更好地模拟体内情况的患者特异性模型带来了希望。然而,由于 CRC 本身的复杂性,要开发出能完全捕捉该疾病多面性的模型仍面临挑战。这种复杂性和与这些技术相关的高昂成本,以及对标准化方案的需求,对这些技术的广泛应用构成了重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The progress and challenges in modeling colorectal cancer and the impact on novel drug discovery.

Introduction: Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide. This disease is complex and heterogeneous, influenced by a variety of genetic, epigenetic, and environmental factors that drive CRC initiation and progression. Despite advances in therapeutic strategies, the five-year survival rate for metastatic CRC is alarmingly low. Traditional two-dimensional (2D) cell culture systems have been the foundation of cancer research, but their inability to replicate the complex tumor microenvironment (TME) limits their effectiveness.

Areas covered: This paper explores the evolution of CRC models, starting with the limitations of traditional 2D cell culture systems and the significant advancements offered by 3D models. Additionally, it highlights 3D bioprinting and on-chip CRC models, which have enhanced the ability to mimic in vivo conditions.

Expert opinion: The transition to advanced 3D models represents a pivotal shift in CRC research, offering considerable improvements over the established 2D models. These models hold promise for the development of patient-specific models that better mimic in vivo conditions. However, the inherent complexity of CRC continues to pose challenges in developing models that can fully capture the disease's multifaceted nature. This complexity and high costs associated with these technologies, along with the need for standardized protocols, pose significant challenges to their widespread adoption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
期刊最新文献
Validation guidelines for drug-target prediction methods. Correction. Data-centric challenges with the application and adoption of artificial intelligence for drug discovery. Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1