{"title":"人工智能与生物信息学:从传统技术到智能方法的旅程。","authors":"Hamid Jamialahmadi, Ghazaleh Khalili-Tanha, Elham Nazari, Mostafa Rezaei-Tavirani","doi":"10.22037/ghfbb.v17i3.2977","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in biomedical sciences.</p>","PeriodicalId":12636,"journal":{"name":"Gastroenterology and Hepatology From Bed to Bench","volume":"17 3","pages":"241-252"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and bioinformatics: a journey from traditional techniques to smart approaches.\",\"authors\":\"Hamid Jamialahmadi, Ghazaleh Khalili-Tanha, Elham Nazari, Mostafa Rezaei-Tavirani\",\"doi\":\"10.22037/ghfbb.v17i3.2977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in biomedical sciences.</p>\",\"PeriodicalId\":12636,\"journal\":{\"name\":\"Gastroenterology and Hepatology From Bed to Bench\",\"volume\":\"17 3\",\"pages\":\"241-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology and Hepatology From Bed to Bench\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22037/ghfbb.v17i3.2977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology and Hepatology From Bed to Bench","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22037/ghfbb.v17i3.2977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Artificial intelligence and bioinformatics: a journey from traditional techniques to smart approaches.
The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in biomedical sciences.