{"title":"PARP-1 负向调节核极蛋白池和线粒体活性:一种细胞保护机制。","authors":"Atanu Ghorai, Soumajit Saha, Basuthkar J Rao","doi":"10.1186/s41021-024-00312-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Poly(ADP-ribose) polymerase-1 (PARP-1) is a pan nuclear protein that utilizes NAD<sup>+</sup> as a substrate for poly(ADP-ribosyl)ation reaction (PARylation), resulting in both auto-modification and the modification of its accepter proteins. Earlier reports suggested that several nucleolar proteins interact and colocalize with PARP-1, leading to their PARylation. However, whether PARP-1 has any role in nucleolar biogenesis and the functional relevance of such a role is still obscure.</p><p><strong>Results: </strong>Using PARP-1 depleted cells, we investigated the function of PARP-1 in maintaining the nucleolar morphology and protein levels under normal physiological conditions. Our results revealed that several nucleolar proteins like nucleolin, fibrillarin, and nucleophosmin get up-regulated when PARP-1 is depleted. Additionally, in line with the higher accumulation of nucleolin, stably depleted PARP-1 cells show lower activation of caspase-3, lesser annexin-V staining, and reduced accumulation of AIF in the nucleus upon induction of oxidative stress. Concurrently, PARP-1 silenced cells showed higher mitochondrial oxidative phosphorylation and more fragmented and intermediate mitochondria than the parental counterpart, suggesting higher metabolic activity for better survival.</p><p><strong>Conclusion: </strong>Based on our findings, we demonstrate that PARP-1 may have a role in regulating nucleolar protein levels and mitochondrial activity, thus maintaining the homeostasis between cell protective and cell death pathways, and such cell-protective mechanism could be implicated as the priming state of a pre-cancerous condition or tumour dormancy.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"46 1","pages":"18"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409631/pdf/","citationCount":"0","resultStr":"{\"title\":\"PARP-1 negatively regulates nucleolar protein pool and mitochondrial activity: a cell protective mechanism.\",\"authors\":\"Atanu Ghorai, Soumajit Saha, Basuthkar J Rao\",\"doi\":\"10.1186/s41021-024-00312-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Poly(ADP-ribose) polymerase-1 (PARP-1) is a pan nuclear protein that utilizes NAD<sup>+</sup> as a substrate for poly(ADP-ribosyl)ation reaction (PARylation), resulting in both auto-modification and the modification of its accepter proteins. Earlier reports suggested that several nucleolar proteins interact and colocalize with PARP-1, leading to their PARylation. However, whether PARP-1 has any role in nucleolar biogenesis and the functional relevance of such a role is still obscure.</p><p><strong>Results: </strong>Using PARP-1 depleted cells, we investigated the function of PARP-1 in maintaining the nucleolar morphology and protein levels under normal physiological conditions. Our results revealed that several nucleolar proteins like nucleolin, fibrillarin, and nucleophosmin get up-regulated when PARP-1 is depleted. Additionally, in line with the higher accumulation of nucleolin, stably depleted PARP-1 cells show lower activation of caspase-3, lesser annexin-V staining, and reduced accumulation of AIF in the nucleus upon induction of oxidative stress. Concurrently, PARP-1 silenced cells showed higher mitochondrial oxidative phosphorylation and more fragmented and intermediate mitochondria than the parental counterpart, suggesting higher metabolic activity for better survival.</p><p><strong>Conclusion: </strong>Based on our findings, we demonstrate that PARP-1 may have a role in regulating nucleolar protein levels and mitochondrial activity, thus maintaining the homeostasis between cell protective and cell death pathways, and such cell-protective mechanism could be implicated as the priming state of a pre-cancerous condition or tumour dormancy.</p>\",\"PeriodicalId\":12709,\"journal\":{\"name\":\"Genes and Environment\",\"volume\":\"46 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Environment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41021-024-00312-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-024-00312-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
PARP-1 negatively regulates nucleolar protein pool and mitochondrial activity: a cell protective mechanism.
Background: Poly(ADP-ribose) polymerase-1 (PARP-1) is a pan nuclear protein that utilizes NAD+ as a substrate for poly(ADP-ribosyl)ation reaction (PARylation), resulting in both auto-modification and the modification of its accepter proteins. Earlier reports suggested that several nucleolar proteins interact and colocalize with PARP-1, leading to their PARylation. However, whether PARP-1 has any role in nucleolar biogenesis and the functional relevance of such a role is still obscure.
Results: Using PARP-1 depleted cells, we investigated the function of PARP-1 in maintaining the nucleolar morphology and protein levels under normal physiological conditions. Our results revealed that several nucleolar proteins like nucleolin, fibrillarin, and nucleophosmin get up-regulated when PARP-1 is depleted. Additionally, in line with the higher accumulation of nucleolin, stably depleted PARP-1 cells show lower activation of caspase-3, lesser annexin-V staining, and reduced accumulation of AIF in the nucleus upon induction of oxidative stress. Concurrently, PARP-1 silenced cells showed higher mitochondrial oxidative phosphorylation and more fragmented and intermediate mitochondria than the parental counterpart, suggesting higher metabolic activity for better survival.
Conclusion: Based on our findings, we demonstrate that PARP-1 may have a role in regulating nucleolar protein levels and mitochondrial activity, thus maintaining the homeostasis between cell protective and cell death pathways, and such cell-protective mechanism could be implicated as the priming state of a pre-cancerous condition or tumour dormancy.
期刊介绍:
Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences.
Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.