Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Luís Laforga Vanzela
{"title":"穗花杉(Eleocharis,茜草科)全中心染色体中 satDNA 分布的不同模式。","authors":"Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Luís Laforga Vanzela","doi":"10.1139/gen-2024-0089","DOIUrl":null,"url":null,"abstract":"<p><p><i>Eleocharis</i> R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different <i>Eleocharis</i> species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of <i>Eleocharis</i> chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species <i>Eleocharis maculosa, Eleocharis</i> <i>geniculata, Eleocharis parodii, Eleocharis elegans</i>, and <i>Eleocharis</i> <i>montana</i>. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the <i>Eleocharis</i> phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus <i>Eleocharis</i>. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (<i>Eleocharis</i>, Cyperaceae).\",\"authors\":\"Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Luís Laforga Vanzela\",\"doi\":\"10.1139/gen-2024-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Eleocharis</i> R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different <i>Eleocharis</i> species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of <i>Eleocharis</i> chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species <i>Eleocharis maculosa, Eleocharis</i> <i>geniculata, Eleocharis parodii, Eleocharis elegans</i>, and <i>Eleocharis</i> <i>montana</i>. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the <i>Eleocharis</i> phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus <i>Eleocharis</i>. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.</p>\",\"PeriodicalId\":12809,\"journal\":{\"name\":\"Genome\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/gen-2024-0089\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2024-0089","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
Eleocharis R.Br.(香蒲科)物种以全中心染色体著称,这使得核型的快速分化成为可能。有资料表明,不同 Eleocharis 物种的染色体数目和基因组大小在种内和种间存在很大差异,经常伴随着重复 DNA 部分的波动。然而,由于缺乏详细的分析,人们无法更好地了解该属的全中心性和重复 DNA 演化之间的相互作用。在我们的研究中,我们通过免疫染色法检测动点蛋白KNL1和依赖于细胞周期的翻译后修饰组蛋白H2AThr121ph和H3S10ph,证实了象鼻虫染色体的全中心性。我们进一步研究了在新测序物种E. maculosa、E. geniculata、E. parodii、E. elegans和E. montana中发现的主要卫星DNA重复序列的组成和染色体分布。在发现的六个卫星DNA重复序列中,有五个呈簇状排列,而EmaSAT14则沿染色体长度呈线状不规则分布。EmaSAT14单体在整个榄香属系统发育树中的少数物种中以少量拷贝存在。尽管如此,这些单体还是积聚在荸荠科(Maculosae)的一个局限性群体--荸荠亚属(Eleocharis)中。这些数据表明,EmaSAT14沿染色体的扩增和线状分布可能是最近在该属的一个部分中发生的。
Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (Eleocharis, Cyperaceae).
Eleocharis R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different Eleocharis species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of Eleocharis chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species Eleocharis maculosa, Eleocharisgeniculata, Eleocharis parodii, Eleocharis elegans, and Eleocharismontana. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the Eleocharis phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus Eleocharis. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.