异常暴露对使用 TLD 剂量计进行个人剂量监测的影响。

IF 1 4区 医学 Q4 ENVIRONMENTAL SCIENCES Health physics Pub Date : 2024-12-01 Epub Date: 2024-09-19 DOI:10.1097/HP.0000000000001874
Yanling Yi, Michael G Stabin
{"title":"异常暴露对使用 TLD 剂量计进行个人剂量监测的影响。","authors":"Yanling Yi, Michael G Stabin","doi":"10.1097/HP.0000000000001874","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Objectives: To analyze the effects of normal x-ray inspection, machine washing, and machine drying on thermoluminescent dosimeter (TLD) measurements during external individual monitoring and to provide suggestions for determining individual monitoring measurements under the mentioned abnormal situations. In this study, we focused on three abnormal situations: x-ray inspection, machine washing, and machine drying, which are common in external individual dose monitoring. We measured and compared the doses from TLD with and without 11, 23, 35, and 50 security checks. We used different radiation sources to expose the TLDs before or after machine washing with or without hot drying. The three radiation sources are natural background radiation, 137 Cs γ rays, and 320 kVp x-rays. We measured 20 TLDs for each situation. The average doses for the TLDs with 11, 23, 35, 50 security checks are 27.7 μGy, 59.7 μGy, 84.1 μGy, and 121.0 μGy, respectively. We measured an average dose of 2.5 μGy per exposure. The doses showed no significant difference between different times of washing with different radiation sources, natural background radiation, 137 Cs, or x-ray exposures. There was also no significant difference between the dose coming from the controlled group, drying at 60 °C and 90 °C for 1 h after exposure to 137 Cs γ rays and 320 kVp x-rays. The common machine drying under the temperature of 90 °C did not affect TLD measured doses.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"730-733"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Abnormal Exposure on Individual Dose Monitoring with TLD Dosimeters.\",\"authors\":\"Yanling Yi, Michael G Stabin\",\"doi\":\"10.1097/HP.0000000000001874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Objectives: To analyze the effects of normal x-ray inspection, machine washing, and machine drying on thermoluminescent dosimeter (TLD) measurements during external individual monitoring and to provide suggestions for determining individual monitoring measurements under the mentioned abnormal situations. In this study, we focused on three abnormal situations: x-ray inspection, machine washing, and machine drying, which are common in external individual dose monitoring. We measured and compared the doses from TLD with and without 11, 23, 35, and 50 security checks. We used different radiation sources to expose the TLDs before or after machine washing with or without hot drying. The three radiation sources are natural background radiation, 137 Cs γ rays, and 320 kVp x-rays. We measured 20 TLDs for each situation. The average doses for the TLDs with 11, 23, 35, 50 security checks are 27.7 μGy, 59.7 μGy, 84.1 μGy, and 121.0 μGy, respectively. We measured an average dose of 2.5 μGy per exposure. The doses showed no significant difference between different times of washing with different radiation sources, natural background radiation, 137 Cs, or x-ray exposures. There was also no significant difference between the dose coming from the controlled group, drying at 60 °C and 90 °C for 1 h after exposure to 137 Cs γ rays and 320 kVp x-rays. The common machine drying under the temperature of 90 °C did not affect TLD measured doses.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"730-733\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001874\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001874","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:目的:分析正常的 X 射线检查、机器清洗和机器烘干对体外个体监测期间热释光剂量计(TLD)测量值的影响,并为确定上述异常情况下的个体监测测量值提供建议。在本研究中,我们重点研究了三种异常情况:X 射线检查、机器清洗和机器烘干,这三种情况在外部个体剂量监测中很常见。我们测量并比较了有和没有 11、23、35 和 50 次安检的 TLD 剂量。我们使用了不同的辐射源,在有或没有热烘干的机器清洗之前或之后对 TLD 进行照射。这三种辐射源分别是天然本底辐射、137Cs γ 射线和 320 kVp X 射线。我们在每种情况下测量了 20 个 TLD。11、23、35、50 次安检的 TLD 平均剂量分别为 27.7 μGy、59.7 μGy、84.1 μGy 和 121.0 μGy。我们测得每次照射的平均剂量为 2.5 μGy。在不同辐射源、天然本底辐射、137Cs 或 X 射线照射下,不同清洗时间的剂量没有明显差异。在对照组中,137Cs γ 射线和 320 kVp X 射线照射后在 60 °C 和 90 °C 下烘干 1 小时所产生的剂量也没有明显差异。在 90 ℃ 的温度下进行普通机器干燥不会影响 TLD 测得的剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Abnormal Exposure on Individual Dose Monitoring with TLD Dosimeters.

Abstract: Objectives: To analyze the effects of normal x-ray inspection, machine washing, and machine drying on thermoluminescent dosimeter (TLD) measurements during external individual monitoring and to provide suggestions for determining individual monitoring measurements under the mentioned abnormal situations. In this study, we focused on three abnormal situations: x-ray inspection, machine washing, and machine drying, which are common in external individual dose monitoring. We measured and compared the doses from TLD with and without 11, 23, 35, and 50 security checks. We used different radiation sources to expose the TLDs before or after machine washing with or without hot drying. The three radiation sources are natural background radiation, 137 Cs γ rays, and 320 kVp x-rays. We measured 20 TLDs for each situation. The average doses for the TLDs with 11, 23, 35, 50 security checks are 27.7 μGy, 59.7 μGy, 84.1 μGy, and 121.0 μGy, respectively. We measured an average dose of 2.5 μGy per exposure. The doses showed no significant difference between different times of washing with different radiation sources, natural background radiation, 137 Cs, or x-ray exposures. There was also no significant difference between the dose coming from the controlled group, drying at 60 °C and 90 °C for 1 h after exposure to 137 Cs γ rays and 320 kVp x-rays. The common machine drying under the temperature of 90 °C did not affect TLD measured doses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
期刊最新文献
Design of a Low-cost Radiation Weather Station. HEALTH PHYSICS SOCIETY . 2025 AFFILIATE MEMBERS. Policy Surveillance Methods Applied to NORM and TENORM Regulation in the Southeast United States. TENORM Regulation in the United States of America post-West Virginia vs. EPA. The Future of Radiation Protection Professionals: Spotlight on Students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1