Phuong T Vu, Stephan Strassle Rojas, Caroline C Ott, Brooks D Lindsey
{"title":"带有声超材料透镜的 9 英尺血管内治疗换能器,用于快速中风血栓切除术。","authors":"Phuong T Vu, Stephan Strassle Rojas, Caroline C Ott, Brooks D Lindsey","doi":"10.1109/TUFFC.2024.3464330","DOIUrl":null,"url":null,"abstract":"<p><p>Large vessel occlusion (LVO) stroke, in which major cerebral arteries such as the internal carotid and middle cerebral arteries supplying the brain are occluded, is the most debilitating form of acute ischemic stroke (AIS). The current gold standard treatment for LVO stroke is mechanical thrombectomy, however, initial attempts to recanalize these large, proximal arteries supplying the brain fail in up to 75% of cases, leading to repeated passes that decrease the likelihood of success and affect patient outcomes. We report the design, fabrication, and testing of a 3 mm × 3 mm forward-treating US transducer with an acoustic metamaterial lens to dissolve blood clots recalcitrant to first pass mechanical thrombectomy in LVO stroke. Due to the lens with microscale features, the device was able to produce a 2.3× increase in peak negative pressure (4.3 MPa vs 1.8 MPa) and 2.4× increase in blood clot dissolution rate (5.43 ± 0.89 mg/min vs 2.23 ± 0.41 mg/min) with 90% mass reduction after 30 minutes of treatment. In this small endovascular form factor, the acoustic metamaterial lens increased the acoustic output from the transducer while minimizing the US energy delivered to the surrounding areas outside of the treatment volume.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 9-Fr Endovascular Therapy Transducer with an Acoustic Metamaterial Lens for Rapid Stroke Thrombectomy.\",\"authors\":\"Phuong T Vu, Stephan Strassle Rojas, Caroline C Ott, Brooks D Lindsey\",\"doi\":\"10.1109/TUFFC.2024.3464330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large vessel occlusion (LVO) stroke, in which major cerebral arteries such as the internal carotid and middle cerebral arteries supplying the brain are occluded, is the most debilitating form of acute ischemic stroke (AIS). The current gold standard treatment for LVO stroke is mechanical thrombectomy, however, initial attempts to recanalize these large, proximal arteries supplying the brain fail in up to 75% of cases, leading to repeated passes that decrease the likelihood of success and affect patient outcomes. We report the design, fabrication, and testing of a 3 mm × 3 mm forward-treating US transducer with an acoustic metamaterial lens to dissolve blood clots recalcitrant to first pass mechanical thrombectomy in LVO stroke. Due to the lens with microscale features, the device was able to produce a 2.3× increase in peak negative pressure (4.3 MPa vs 1.8 MPa) and 2.4× increase in blood clot dissolution rate (5.43 ± 0.89 mg/min vs 2.23 ± 0.41 mg/min) with 90% mass reduction after 30 minutes of treatment. In this small endovascular form factor, the acoustic metamaterial lens increased the acoustic output from the transducer while minimizing the US energy delivered to the surrounding areas outside of the treatment volume.</p>\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TUFFC.2024.3464330\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2024.3464330","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
A 9-Fr Endovascular Therapy Transducer with an Acoustic Metamaterial Lens for Rapid Stroke Thrombectomy.
Large vessel occlusion (LVO) stroke, in which major cerebral arteries such as the internal carotid and middle cerebral arteries supplying the brain are occluded, is the most debilitating form of acute ischemic stroke (AIS). The current gold standard treatment for LVO stroke is mechanical thrombectomy, however, initial attempts to recanalize these large, proximal arteries supplying the brain fail in up to 75% of cases, leading to repeated passes that decrease the likelihood of success and affect patient outcomes. We report the design, fabrication, and testing of a 3 mm × 3 mm forward-treating US transducer with an acoustic metamaterial lens to dissolve blood clots recalcitrant to first pass mechanical thrombectomy in LVO stroke. Due to the lens with microscale features, the device was able to produce a 2.3× increase in peak negative pressure (4.3 MPa vs 1.8 MPa) and 2.4× increase in blood clot dissolution rate (5.43 ± 0.89 mg/min vs 2.23 ± 0.41 mg/min) with 90% mass reduction after 30 minutes of treatment. In this small endovascular form factor, the acoustic metamaterial lens increased the acoustic output from the transducer while minimizing the US energy delivered to the surrounding areas outside of the treatment volume.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.