Rei Iguchi, Tomoki Kita, Taisei Watanabe, Kyoko Chiba, Shinsuke Niwa
{"title":"通过单分子运动试验和优雅鼠遗传学鉴定人类 KIF1Bß 的运动活性。","authors":"Rei Iguchi, Tomoki Kita, Taisei Watanabe, Kyoko Chiba, Shinsuke Niwa","doi":"10.1242/jcs.261783","DOIUrl":null,"url":null,"abstract":"<p><p>The axonal transport of synaptic vesicle precursors relies on KIF1A and UNC-104 ortholog motors. In mammals, KIF1Bβ is also responsible for the axonal transport of synaptic vesicle precursors. Mutations in KIF1A and KIF1Bβ lead to a wide range of neuropathies. Although previous studies have revealed the biochemical, biophysical and cell biological properties of KIF1A, and its defects in neurological disorders, the fundamental properties of KIF1Bβ remain elusive. In this study, we determined the motile parameters of KIF1Bβ through single-molecule motility assays. We found that the C-terminal region of KIF1Bβ has an inhibitory role in motor activity. AlphaFold2 prediction suggests that the C-terminal region blocks the motor domain. Additionally, we established simple methods for testing the axonal transport activity of human KIF1Bβ using Caenorhabditis elegans genetics. Taking advantage of these methods, we demonstrated that these assays enable the detection of reduced KIF1Bβ activities, both in vitro and in vivo, caused by a Charcot-Marie-Tooth disease-associated Q98L mutation.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing human KIF1Bβ motor activity by single-molecule motility assays and Caenorhabditis elegans genetics.\",\"authors\":\"Rei Iguchi, Tomoki Kita, Taisei Watanabe, Kyoko Chiba, Shinsuke Niwa\",\"doi\":\"10.1242/jcs.261783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The axonal transport of synaptic vesicle precursors relies on KIF1A and UNC-104 ortholog motors. In mammals, KIF1Bβ is also responsible for the axonal transport of synaptic vesicle precursors. Mutations in KIF1A and KIF1Bβ lead to a wide range of neuropathies. Although previous studies have revealed the biochemical, biophysical and cell biological properties of KIF1A, and its defects in neurological disorders, the fundamental properties of KIF1Bβ remain elusive. In this study, we determined the motile parameters of KIF1Bβ through single-molecule motility assays. We found that the C-terminal region of KIF1Bβ has an inhibitory role in motor activity. AlphaFold2 prediction suggests that the C-terminal region blocks the motor domain. Additionally, we established simple methods for testing the axonal transport activity of human KIF1Bβ using Caenorhabditis elegans genetics. Taking advantage of these methods, we demonstrated that these assays enable the detection of reduced KIF1Bβ activities, both in vitro and in vivo, caused by a Charcot-Marie-Tooth disease-associated Q98L mutation.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.261783\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.261783","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Characterizing human KIF1Bβ motor activity by single-molecule motility assays and Caenorhabditis elegans genetics.
The axonal transport of synaptic vesicle precursors relies on KIF1A and UNC-104 ortholog motors. In mammals, KIF1Bβ is also responsible for the axonal transport of synaptic vesicle precursors. Mutations in KIF1A and KIF1Bβ lead to a wide range of neuropathies. Although previous studies have revealed the biochemical, biophysical and cell biological properties of KIF1A, and its defects in neurological disorders, the fundamental properties of KIF1Bβ remain elusive. In this study, we determined the motile parameters of KIF1Bβ through single-molecule motility assays. We found that the C-terminal region of KIF1Bβ has an inhibitory role in motor activity. AlphaFold2 prediction suggests that the C-terminal region blocks the motor domain. Additionally, we established simple methods for testing the axonal transport activity of human KIF1Bβ using Caenorhabditis elegans genetics. Taking advantage of these methods, we demonstrated that these assays enable the detection of reduced KIF1Bβ activities, both in vitro and in vivo, caused by a Charcot-Marie-Tooth disease-associated Q98L mutation.