{"title":"转谷氨酰胺酶在鱼类进化过程中介导了因子 XIIIA 基因复制产生的鱼卵包膜硬化。","authors":"Shigeki Yasumasu, Miyuki Horie, Mayuko Horie, Kodai Sakuma, Chihiro Sato, Hikari Sato, Taiki Nakajima, Tatsuki Nagasawa, Mari Kawaguchi, Ichiro Iuchi","doi":"10.1093/jb/mvae062","DOIUrl":null,"url":null,"abstract":"<p><p>During the fertilization of fish eggs, the hardening of the egg envelope is mediated by transglutaminase (hTGase). After fertilization, TGase undergoes processing. We isolated hTGase from extracts of unfertilized and water-activated rainbow trout eggs. Rainbow trout hTGase (Rt-hTGase) appeared as an 80 kDa protein, and its processed form was 55 kDa. Their N-terminal amino acid sequences were nearly identical, suggesting processing in the C-terminal region. The specific activities were not significantly different, indicating that C-terminal processing does not activate the enzyme itself. We cloned the cDNA by reverse transcription polymerase chain reaction (RT-PCR) using degenerate primers followed by RACE-PCR. The deduced amino acid sequence of the cDNA was similar to that of factor XIII subunit A (FXIIIA). Molecular phylogenetic and gene syntenic analyses clearly showed that hTGase was produced by duplication of FXIIIA during the evolution to Teleostei. The 55 kDa processed form of Rt-hTGase is predominantly composed of an enzyme domain predicted from the amino acid sequence of the cDNA. It is hypothesized that the C-terminal domain of Rt-hTGase binds to egg envelope proteins, and that processing allows the enzyme to move freely within the egg envelope, increasing substrate-enzyme interaction and thereby accelerating hardening.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transglutaminase mediates the hardening of fish egg envelope produced by duplication of factor XIIIA gene during the evolution of Teleostei.\",\"authors\":\"Shigeki Yasumasu, Miyuki Horie, Mayuko Horie, Kodai Sakuma, Chihiro Sato, Hikari Sato, Taiki Nakajima, Tatsuki Nagasawa, Mari Kawaguchi, Ichiro Iuchi\",\"doi\":\"10.1093/jb/mvae062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the fertilization of fish eggs, the hardening of the egg envelope is mediated by transglutaminase (hTGase). After fertilization, TGase undergoes processing. We isolated hTGase from extracts of unfertilized and water-activated rainbow trout eggs. Rainbow trout hTGase (Rt-hTGase) appeared as an 80 kDa protein, and its processed form was 55 kDa. Their N-terminal amino acid sequences were nearly identical, suggesting processing in the C-terminal region. The specific activities were not significantly different, indicating that C-terminal processing does not activate the enzyme itself. We cloned the cDNA by reverse transcription polymerase chain reaction (RT-PCR) using degenerate primers followed by RACE-PCR. The deduced amino acid sequence of the cDNA was similar to that of factor XIII subunit A (FXIIIA). Molecular phylogenetic and gene syntenic analyses clearly showed that hTGase was produced by duplication of FXIIIA during the evolution to Teleostei. The 55 kDa processed form of Rt-hTGase is predominantly composed of an enzyme domain predicted from the amino acid sequence of the cDNA. It is hypothesized that the C-terminal domain of Rt-hTGase binds to egg envelope proteins, and that processing allows the enzyme to move freely within the egg envelope, increasing substrate-enzyme interaction and thereby accelerating hardening.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvae062\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae062","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在鱼卵受精过程中,卵包膜的硬化是由转谷氨酰胺酶(hTGase)介导的。受精后,转谷氨酰胺酶会进行加工。我们从未受精虹鳟鱼卵和水活化虹鳟鱼卵的提取物中分离出了 hTGase。虹鳟鱼 hTGase(Rt-hTGase)呈 80 kDa 蛋白,其加工形式为 55 kDa。它们的 N 端氨基酸序列几乎相同,表明在 C 端区域进行了加工。它们的特异性活性没有明显差异,表明 C 端加工并没有激活酶本身。我们使用变性引物通过反转录聚合酶链反应(RT-PCR)克隆了 cDNA,然后进行了 RACE-PCR。cDNA 的推导氨基酸序列与因子 XIII 亚基 A(FXIIIA)相似。分子系统发育和基因同源分析清楚地表明,hTGase 是由 FXIIIA 在向长尾目进化过程中复制产生的。Rt-hTGase 的 55 kDa 加工形式主要由根据 cDNA 氨基酸序列预测的酶域组成。据推测,Rt-hTGase 的 C 端结构域可与卵包膜蛋白质结合,加工后的酶可在卵包膜内自由移动,增加底物与酶的相互作用,从而加速硬化。
Transglutaminase mediates the hardening of fish egg envelope produced by duplication of factor XIIIA gene during the evolution of Teleostei.
During the fertilization of fish eggs, the hardening of the egg envelope is mediated by transglutaminase (hTGase). After fertilization, TGase undergoes processing. We isolated hTGase from extracts of unfertilized and water-activated rainbow trout eggs. Rainbow trout hTGase (Rt-hTGase) appeared as an 80 kDa protein, and its processed form was 55 kDa. Their N-terminal amino acid sequences were nearly identical, suggesting processing in the C-terminal region. The specific activities were not significantly different, indicating that C-terminal processing does not activate the enzyme itself. We cloned the cDNA by reverse transcription polymerase chain reaction (RT-PCR) using degenerate primers followed by RACE-PCR. The deduced amino acid sequence of the cDNA was similar to that of factor XIII subunit A (FXIIIA). Molecular phylogenetic and gene syntenic analyses clearly showed that hTGase was produced by duplication of FXIIIA during the evolution to Teleostei. The 55 kDa processed form of Rt-hTGase is predominantly composed of an enzyme domain predicted from the amino acid sequence of the cDNA. It is hypothesized that the C-terminal domain of Rt-hTGase binds to egg envelope proteins, and that processing allows the enzyme to move freely within the egg envelope, increasing substrate-enzyme interaction and thereby accelerating hardening.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.