{"title":"使用不同光引发剂体系的牙科粘合剂的挠曲强度。","authors":"Aldo-Pessoa de Figueiredo, Isaias-Donizeti Silva, Milton-Edson Miranda, Rafael-Pino Vitti, William-Cunha Brandt","doi":"10.4317/jced.61887","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to investigate the flexural strength of dental adhesives containing different combinations of photoinitiators systems.</p><p><strong>Material and methods: </strong>The organic matrix of the experimental adhesives was created using a blend of monomers: 50% by weight bisphenol-A glycidyl methacrylate (BisGMA) and 50% triethylene glycol dimethacrylate (TEGDMA). The photoinitiators utilized were camphorquinone (CQ) and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO), with diphenyliodonium hexafluorophosphate (DPIHFP) and 2-(Dimethylamino)ethyl methacrylate (DMAEMA) as co-initiators. These photoinitiators and co-initiators were integrated into the organic matrix at a concentration of 0.5% by mass, resulting in the formation of 6 groups (n=12): CQ/DMAEMA (control); CQ/DMAEMA/DPIHFP; BAPO; BAPO/DMAEMA; BAPO/DPIHFP and BAPO/DMAEMA/DPIHFP. Samples measuring 7 mm in length, 2 mm in width, and 1 mm in height were prepared and subjected to a three-point flexural test. Data were analyzed using one-way ANOVA with Tukey's post-hoc test (α=0.05).</p><p><strong>Results: </strong>Results indicated that groups incorporating BAPO and DPIHFP exhibited higher flexural strength compared to those with CQ and DMAEMA. The BAPO/DPIHFP group achieved the highest mean flexural strength values (<i>p</i><0.001).</p><p><strong>Conclusions: </strong>These findings suggest that using adhesive systems with alternative photoinitiators and co-initiators can lead to superior flexural strength compared to conventional systems. <b>Key words:</b>Photoinitiators, Dentin-bonding agents, Light-curing.</p>","PeriodicalId":15376,"journal":{"name":"Journal of Clinical and Experimental Dentistry","volume":"16 8","pages":"e984-e988"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392447/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flexural strength of dental adhesives with different photoinitiator systems.\",\"authors\":\"Aldo-Pessoa de Figueiredo, Isaias-Donizeti Silva, Milton-Edson Miranda, Rafael-Pino Vitti, William-Cunha Brandt\",\"doi\":\"10.4317/jced.61887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The aim of this study was to investigate the flexural strength of dental adhesives containing different combinations of photoinitiators systems.</p><p><strong>Material and methods: </strong>The organic matrix of the experimental adhesives was created using a blend of monomers: 50% by weight bisphenol-A glycidyl methacrylate (BisGMA) and 50% triethylene glycol dimethacrylate (TEGDMA). The photoinitiators utilized were camphorquinone (CQ) and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO), with diphenyliodonium hexafluorophosphate (DPIHFP) and 2-(Dimethylamino)ethyl methacrylate (DMAEMA) as co-initiators. These photoinitiators and co-initiators were integrated into the organic matrix at a concentration of 0.5% by mass, resulting in the formation of 6 groups (n=12): CQ/DMAEMA (control); CQ/DMAEMA/DPIHFP; BAPO; BAPO/DMAEMA; BAPO/DPIHFP and BAPO/DMAEMA/DPIHFP. Samples measuring 7 mm in length, 2 mm in width, and 1 mm in height were prepared and subjected to a three-point flexural test. Data were analyzed using one-way ANOVA with Tukey's post-hoc test (α=0.05).</p><p><strong>Results: </strong>Results indicated that groups incorporating BAPO and DPIHFP exhibited higher flexural strength compared to those with CQ and DMAEMA. The BAPO/DPIHFP group achieved the highest mean flexural strength values (<i>p</i><0.001).</p><p><strong>Conclusions: </strong>These findings suggest that using adhesive systems with alternative photoinitiators and co-initiators can lead to superior flexural strength compared to conventional systems. <b>Key words:</b>Photoinitiators, Dentin-bonding agents, Light-curing.</p>\",\"PeriodicalId\":15376,\"journal\":{\"name\":\"Journal of Clinical and Experimental Dentistry\",\"volume\":\"16 8\",\"pages\":\"e984-e988\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392447/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical and Experimental Dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4317/jced.61887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Experimental Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4317/jced.61887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
Flexural strength of dental adhesives with different photoinitiator systems.
Background: The aim of this study was to investigate the flexural strength of dental adhesives containing different combinations of photoinitiators systems.
Material and methods: The organic matrix of the experimental adhesives was created using a blend of monomers: 50% by weight bisphenol-A glycidyl methacrylate (BisGMA) and 50% triethylene glycol dimethacrylate (TEGDMA). The photoinitiators utilized were camphorquinone (CQ) and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO), with diphenyliodonium hexafluorophosphate (DPIHFP) and 2-(Dimethylamino)ethyl methacrylate (DMAEMA) as co-initiators. These photoinitiators and co-initiators were integrated into the organic matrix at a concentration of 0.5% by mass, resulting in the formation of 6 groups (n=12): CQ/DMAEMA (control); CQ/DMAEMA/DPIHFP; BAPO; BAPO/DMAEMA; BAPO/DPIHFP and BAPO/DMAEMA/DPIHFP. Samples measuring 7 mm in length, 2 mm in width, and 1 mm in height were prepared and subjected to a three-point flexural test. Data were analyzed using one-way ANOVA with Tukey's post-hoc test (α=0.05).
Results: Results indicated that groups incorporating BAPO and DPIHFP exhibited higher flexural strength compared to those with CQ and DMAEMA. The BAPO/DPIHFP group achieved the highest mean flexural strength values (p<0.001).
Conclusions: These findings suggest that using adhesive systems with alternative photoinitiators and co-initiators can lead to superior flexural strength compared to conventional systems. Key words:Photoinitiators, Dentin-bonding agents, Light-curing.
期刊介绍:
Indexed in PUBMED, PubMed Central® (PMC) since 2012 and SCOPUSJournal of Clinical and Experimental Dentistry is an Open Access (free access on-line) - http://www.medicinaoral.com/odo/indice.htm. The aim of the Journal of Clinical and Experimental Dentistry is: - Periodontology - Community and Preventive Dentistry - Esthetic Dentistry - Biomaterials and Bioengineering in Dentistry - Operative Dentistry and Endodontics - Prosthetic Dentistry - Orthodontics - Oral Medicine and Pathology - Odontostomatology for the disabled or special patients - Oral Surgery