{"title":"植物与病原体相互作用中的内质网平衡:老故事的新情景。","authors":"Yuhan Liu, Shiping Tian, Tong Chen","doi":"10.1093/jxb/erae404","DOIUrl":null,"url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) is a specialized organelle that connects almost all subcellular structures from the plasma membrane to the nucleus. The ER is involved in secretory protein synthesis, folding, and processing. Evidence has emerged that the ER is at the frontier of the battle between plant hosts and pathogens. Its structural and functional homeostasis is crucial for the survival of plant cells. Pathogens secrete effectors to take over normal functions of the ER, while host plants fight back to activate ER stress responses. Exciting advances have been made in studies on host plant-pathogen dynamics during the past decades, namely some new players involved have been recently resolved from both pathogens and hosts. In this review, we summarize advances in identifying structural characteristics of the key pathways and effectors targeting the ER. Newly identified ER-phagy receptors and components downstream of inositol-requiring 1 (IRE1) will be described. Future studies will be envisaged to further our understanding of the missing parts in this dynamic frontier.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"277-284"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endoplasmic reticulum homeostasis in plant-pathogen interactions: new scenarios for an old story.\",\"authors\":\"Yuhan Liu, Shiping Tian, Tong Chen\",\"doi\":\"10.1093/jxb/erae404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endoplasmic reticulum (ER) is a specialized organelle that connects almost all subcellular structures from the plasma membrane to the nucleus. The ER is involved in secretory protein synthesis, folding, and processing. Evidence has emerged that the ER is at the frontier of the battle between plant hosts and pathogens. Its structural and functional homeostasis is crucial for the survival of plant cells. Pathogens secrete effectors to take over normal functions of the ER, while host plants fight back to activate ER stress responses. Exciting advances have been made in studies on host plant-pathogen dynamics during the past decades, namely some new players involved have been recently resolved from both pathogens and hosts. In this review, we summarize advances in identifying structural characteristics of the key pathways and effectors targeting the ER. Newly identified ER-phagy receptors and components downstream of inositol-requiring 1 (IRE1) will be described. Future studies will be envisaged to further our understanding of the missing parts in this dynamic frontier.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"277-284\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae404\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae404","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Endoplasmic reticulum homeostasis in plant-pathogen interactions: new scenarios for an old story.
The endoplasmic reticulum (ER) is a specialized organelle that connects almost all subcellular structures from the plasma membrane to the nucleus. The ER is involved in secretory protein synthesis, folding, and processing. Evidence has emerged that the ER is at the frontier of the battle between plant hosts and pathogens. Its structural and functional homeostasis is crucial for the survival of plant cells. Pathogens secrete effectors to take over normal functions of the ER, while host plants fight back to activate ER stress responses. Exciting advances have been made in studies on host plant-pathogen dynamics during the past decades, namely some new players involved have been recently resolved from both pathogens and hosts. In this review, we summarize advances in identifying structural characteristics of the key pathways and effectors targeting the ER. Newly identified ER-phagy receptors and components downstream of inositol-requiring 1 (IRE1) will be described. Future studies will be envisaged to further our understanding of the missing parts in this dynamic frontier.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.