{"title":"人工智能和放射技师初步图像评估:在急诊环境中提供 X 射线判读的放射技师的未来会怎样?","authors":"Clare Rainey PhD, FHEA","doi":"10.1002/jmrs.821","DOIUrl":null,"url":null,"abstract":"<p>In a stretched healthcare system, radiographer preliminary image evaluation in the acute setting can be a means to optimise patient care by reducing error and increasing efficiencies in the patient journey. Radiographers have shown impressive accuracies in the provision of these initial evaluations, however, barriers such as a lack of confidence and increased workloads have been cited as a reason for radiographer reticence in engagement with this practice. With advances in Artificial Intelligence (AI) technology for assistance in clinical decision-making, and indication that this may increase confidence in diagnostic decision-making with reporting radiographers, the author of this editorial wonders what the impact of this technology might be on clinical decision-making by radiographers in the provision of Preliminary Image Evaluation (PIE).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16382,"journal":{"name":"Journal of Medical Radiation Sciences","volume":"71 4","pages":"495-498"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and radiographer preliminary image evaluation: What might the future hold for radiographers providing x-ray interpretation in the acute setting?\",\"authors\":\"Clare Rainey PhD, FHEA\",\"doi\":\"10.1002/jmrs.821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a stretched healthcare system, radiographer preliminary image evaluation in the acute setting can be a means to optimise patient care by reducing error and increasing efficiencies in the patient journey. Radiographers have shown impressive accuracies in the provision of these initial evaluations, however, barriers such as a lack of confidence and increased workloads have been cited as a reason for radiographer reticence in engagement with this practice. With advances in Artificial Intelligence (AI) technology for assistance in clinical decision-making, and indication that this may increase confidence in diagnostic decision-making with reporting radiographers, the author of this editorial wonders what the impact of this technology might be on clinical decision-making by radiographers in the provision of Preliminary Image Evaluation (PIE).\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16382,\"journal\":{\"name\":\"Journal of Medical Radiation Sciences\",\"volume\":\"71 4\",\"pages\":\"495-498\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Radiation Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmrs.821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmrs.821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Artificial intelligence and radiographer preliminary image evaluation: What might the future hold for radiographers providing x-ray interpretation in the acute setting?
In a stretched healthcare system, radiographer preliminary image evaluation in the acute setting can be a means to optimise patient care by reducing error and increasing efficiencies in the patient journey. Radiographers have shown impressive accuracies in the provision of these initial evaluations, however, barriers such as a lack of confidence and increased workloads have been cited as a reason for radiographer reticence in engagement with this practice. With advances in Artificial Intelligence (AI) technology for assistance in clinical decision-making, and indication that this may increase confidence in diagnostic decision-making with reporting radiographers, the author of this editorial wonders what the impact of this technology might be on clinical decision-making by radiographers in the provision of Preliminary Image Evaluation (PIE).
期刊介绍:
Journal of Medical Radiation Sciences (JMRS) is an international and multidisciplinary peer-reviewed journal that accepts manuscripts related to medical imaging / diagnostic radiography, radiation therapy, nuclear medicine, medical ultrasound / sonography, and the complementary disciplines of medical physics, radiology, radiation oncology, nursing, psychology and sociology. Manuscripts may take the form of: original articles, review articles, commentary articles, technical evaluations, case series and case studies. JMRS promotes excellence in international medical radiation science by the publication of contemporary and advanced research that encourages the adoption of the best clinical, scientific and educational practices in international communities. JMRS is the official professional journal of the Australian Society of Medical Imaging and Radiation Therapy (ASMIRT) and the New Zealand Institute of Medical Radiation Technology (NZIMRT).