利用钆基和镱基氧化物中的沮度实现毫开尔文绝热消磁制冷。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-10-14 DOI:10.1088/1361-648X/ad7dc5
Tim Treu, Marvin Klinger, Noah Oefele, Prachi Telang, Anton Jesche, Philipp Gegenwart
{"title":"利用钆基和镱基氧化物中的沮度实现毫开尔文绝热消磁制冷。","authors":"Tim Treu, Marvin Klinger, Noah Oefele, Prachi Telang, Anton Jesche, Philipp Gegenwart","doi":"10.1088/1361-648X/ad7dc5","DOIUrl":null,"url":null,"abstract":"<p><p>The manifold of energetically degenerate configurations arising from competing interactions in frustrated magnets gives rise to an enhanced entropy at lowest temperatures, which can be utilized for adiabatic demagnetization refrigeration (ADR). We review structural and magnetic properties of various Yb- and Gd-based oxides featuring frustration related to different triangular moment configurations and (in some cases) structural randomness. In comparison to paramagnetic hydrated salts, which have traditionally been employed for mK-ADR, these novel ADR materials enable cooling to temperatures several times lower than the magnetic interaction strength, significantly enhancing the entropy density and cooling power at a given target temperature. A further advantage is their chemical stability, allowing for a much simpler ADR pill design and ultra-high vacuum applications. For the temperature range between 0.03 and 2 K, a systematic comparison of the field-induced entropy density change is provided, that illustrates the advantages of frustrated magnets for low-temperature ADR.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing frustration in Gd- and Yb-based oxides for milli-Kelvin adiabatic demagnetization refrigeration.\",\"authors\":\"Tim Treu, Marvin Klinger, Noah Oefele, Prachi Telang, Anton Jesche, Philipp Gegenwart\",\"doi\":\"10.1088/1361-648X/ad7dc5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The manifold of energetically degenerate configurations arising from competing interactions in frustrated magnets gives rise to an enhanced entropy at lowest temperatures, which can be utilized for adiabatic demagnetization refrigeration (ADR). We review structural and magnetic properties of various Yb- and Gd-based oxides featuring frustration related to different triangular moment configurations and (in some cases) structural randomness. In comparison to paramagnetic hydrated salts, which have traditionally been employed for mK-ADR, these novel ADR materials enable cooling to temperatures several times lower than the magnetic interaction strength, significantly enhancing the entropy density and cooling power at a given target temperature. A further advantage is their chemical stability, allowing for a much simpler ADR pill design and ultra-high vacuum applications. For the temperature range between 0.03 and 2 K, a systematic comparison of the field-induced entropy density change is provided, that illustrates the advantages of frustrated magnets for low-temperature ADR.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad7dc5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7dc5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

挫折磁体中相互竞争的相互作用所产生的能量退化构型的流形在最低温度下会产生增强的熵,可用于绝热去磁制冷(ADR)。我们综述了各种镱基和钆基氧化物的结构和磁特性,这些氧化物具有与不同三角力矩配置和(某些情况下的)结构随机性有关的挫折。与传统上用于 mK-ADR 的顺磁性水合盐相比,这些新型 ADR 材料可以冷却到比磁相互作用强度低数倍的温度,从而显著提高给定目标温度下的熵密度和冷却功率。它们的另一个优势是化学稳定性,使 ADR 药丸的设计和超高真空应用更加简单。在 0.02 至 2~K 的温度范围内,对磁场诱导的熵密度变化进行了系统比较,说明了挫折磁体在低温 ADR 方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing frustration in Gd- and Yb-based oxides for milli-Kelvin adiabatic demagnetization refrigeration.

The manifold of energetically degenerate configurations arising from competing interactions in frustrated magnets gives rise to an enhanced entropy at lowest temperatures, which can be utilized for adiabatic demagnetization refrigeration (ADR). We review structural and magnetic properties of various Yb- and Gd-based oxides featuring frustration related to different triangular moment configurations and (in some cases) structural randomness. In comparison to paramagnetic hydrated salts, which have traditionally been employed for mK-ADR, these novel ADR materials enable cooling to temperatures several times lower than the magnetic interaction strength, significantly enhancing the entropy density and cooling power at a given target temperature. A further advantage is their chemical stability, allowing for a much simpler ADR pill design and ultra-high vacuum applications. For the temperature range between 0.03 and 2 K, a systematic comparison of the field-induced entropy density change is provided, that illustrates the advantages of frustrated magnets for low-temperature ADR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Superconducting energy gap structure of CsV3Sb5from magnetic penetration depth measurements. Valley manipulation by external fields in two-dimensional materials and their hybrid systems. Topological Hall effect instigated in kagome Mn3-xSn due to Mn-deficit induced noncoplanar spin structure. Evolution of structural, magnetic and transport properties of 3d-5dbased double perovskites Nd2-xSrxCoIrO6. Monolayer M2X2O as potential 2D altermagnets and half-metals: a first principles study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1