Helen Farrants, Yichun Shuai, William C. Lemon, Christian Monroy Hernandez, Deng Zhang, Shang Yang, Ronak Patel, Guanda Qiao, Michelle S. Frei, Sarah E. Plutkis, Jonathan B. Grimm, Timothy L. Hanson, Filip Tomaska, Glenn C. Turner, Carsen Stringer, Philipp J. Keller, Abraham G. Beyene, Yao Chen, Yajie Liang, Luke D. Lavis, Eric R. Schreiter
{"title":"用于多路复用体内功能成像的模块化化学钙指示剂。","authors":"Helen Farrants, Yichun Shuai, William C. Lemon, Christian Monroy Hernandez, Deng Zhang, Shang Yang, Ronak Patel, Guanda Qiao, Michelle S. Frei, Sarah E. Plutkis, Jonathan B. Grimm, Timothy L. Hanson, Filip Tomaska, Glenn C. Turner, Carsen Stringer, Philipp J. Keller, Abraham G. Beyene, Yao Chen, Yajie Liang, Luke D. Lavis, Eric R. Schreiter","doi":"10.1038/s41592-024-02411-6","DOIUrl":null,"url":null,"abstract":"Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca2+ responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca2+ concentration using fluorescence lifetime imaging microscopy (FLIM). WHaloCaMP is a chemigenetic calcium indicator that can be combined with different rhodamine dyes for multiplexed or FLIM imaging in vivo, as demonstrated for calcium imaging in neuronal cultures, brain slices, Drosophila, zebrafish larvae and the mouse brain.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 10","pages":"1916-1925"},"PeriodicalIF":36.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02411-6.pdf","citationCount":"0","resultStr":"{\"title\":\"A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging\",\"authors\":\"Helen Farrants, Yichun Shuai, William C. Lemon, Christian Monroy Hernandez, Deng Zhang, Shang Yang, Ronak Patel, Guanda Qiao, Michelle S. Frei, Sarah E. Plutkis, Jonathan B. Grimm, Timothy L. Hanson, Filip Tomaska, Glenn C. Turner, Carsen Stringer, Philipp J. Keller, Abraham G. Beyene, Yao Chen, Yajie Liang, Luke D. Lavis, Eric R. Schreiter\",\"doi\":\"10.1038/s41592-024-02411-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca2+ responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca2+ concentration using fluorescence lifetime imaging microscopy (FLIM). WHaloCaMP is a chemigenetic calcium indicator that can be combined with different rhodamine dyes for multiplexed or FLIM imaging in vivo, as demonstrated for calcium imaging in neuronal cultures, brain slices, Drosophila, zebrafish larvae and the mouse brain.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"21 10\",\"pages\":\"1916-1925\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41592-024-02411-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02411-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02411-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging
Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca2+ responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca2+ concentration using fluorescence lifetime imaging microscopy (FLIM). WHaloCaMP is a chemigenetic calcium indicator that can be combined with different rhodamine dyes for multiplexed or FLIM imaging in vivo, as demonstrated for calcium imaging in neuronal cultures, brain slices, Drosophila, zebrafish larvae and the mouse brain.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.