Duaa Raad Abd-Al-Ameer, Wefak Albazi, Hayder Ali Muhammed
{"title":"通过 TRAP 和 ERK 生物标记监测慢性高胆固醇血症雄性大鼠骨基质的酸化。","authors":"Duaa Raad Abd-Al-Ameer, Wefak Albazi, Hayder Ali Muhammed","doi":"10.5455/OVJ.2024.v14.i8.11","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypercholesterolemia is frequently linked to an elevated risk of cardiovascular diseases, including heart attacks and strokes. Additionally, it could be connected to a higher susceptibility to osteoporosis. Hypercholesterolemia can stimulate the differentiation and activity of osteoclasts, leading to enhanced bone reabsorption and a subsequent net loss of bone tissue.</p><p><strong>Aim: </strong>The purpose of this study was to examine the influence of a high-cholesterol diet on osteoporosis in male rats with differences in biological and oxidative indicators in the hypercholesterolemia diet in male rats.</p><p><strong>Methods: </strong>The samples in this study were twenty male rats, ranging between 1.5 and 2 months, were separated into two groups. In one group, 10 rats were fed a regular diet, while in another group, 10 rats were fed a high-cholesterol diet (2%) over the course of 8 weeks. Samples of blood were obtained at the last stage of the experiment. To calculate physiological and biological markers including extracellular signal-regulated kinase (ERK), tartrate-resistant acid phosphatase (TRAP), hormones, malondialdehyde (MDA), and glutathione (GSH).</p><p><strong>Results: </strong>The results of this study demonstrated a decrease in GSH levels, an increase in ERKs, no significant change in serum TRAP levels, an increase in MDA levels in the blood, and elevated levels of parathyroid hormone, calcitonin, and vitamin D in the cholesterol group.</p><p><strong>Conclusion: </strong>Increased oxidative stress, altered signaling, and disruptions in calcium/bone metabolism associated with cholesterol-related conditions and monitoring biomarker ERK can provide valuable information about disease progression.</p>","PeriodicalId":19531,"journal":{"name":"Open Veterinary Journal","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415907/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monitoring of bone matrix acidification by TRAP and ERK biomarkers in the chronic hypercholesterolemia male rats.\",\"authors\":\"Duaa Raad Abd-Al-Ameer, Wefak Albazi, Hayder Ali Muhammed\",\"doi\":\"10.5455/OVJ.2024.v14.i8.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hypercholesterolemia is frequently linked to an elevated risk of cardiovascular diseases, including heart attacks and strokes. Additionally, it could be connected to a higher susceptibility to osteoporosis. Hypercholesterolemia can stimulate the differentiation and activity of osteoclasts, leading to enhanced bone reabsorption and a subsequent net loss of bone tissue.</p><p><strong>Aim: </strong>The purpose of this study was to examine the influence of a high-cholesterol diet on osteoporosis in male rats with differences in biological and oxidative indicators in the hypercholesterolemia diet in male rats.</p><p><strong>Methods: </strong>The samples in this study were twenty male rats, ranging between 1.5 and 2 months, were separated into two groups. In one group, 10 rats were fed a regular diet, while in another group, 10 rats were fed a high-cholesterol diet (2%) over the course of 8 weeks. Samples of blood were obtained at the last stage of the experiment. To calculate physiological and biological markers including extracellular signal-regulated kinase (ERK), tartrate-resistant acid phosphatase (TRAP), hormones, malondialdehyde (MDA), and glutathione (GSH).</p><p><strong>Results: </strong>The results of this study demonstrated a decrease in GSH levels, an increase in ERKs, no significant change in serum TRAP levels, an increase in MDA levels in the blood, and elevated levels of parathyroid hormone, calcitonin, and vitamin D in the cholesterol group.</p><p><strong>Conclusion: </strong>Increased oxidative stress, altered signaling, and disruptions in calcium/bone metabolism associated with cholesterol-related conditions and monitoring biomarker ERK can provide valuable information about disease progression.</p>\",\"PeriodicalId\":19531,\"journal\":{\"name\":\"Open Veterinary Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Veterinary Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/OVJ.2024.v14.i8.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Veterinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/OVJ.2024.v14.i8.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Monitoring of bone matrix acidification by TRAP and ERK biomarkers in the chronic hypercholesterolemia male rats.
Background: Hypercholesterolemia is frequently linked to an elevated risk of cardiovascular diseases, including heart attacks and strokes. Additionally, it could be connected to a higher susceptibility to osteoporosis. Hypercholesterolemia can stimulate the differentiation and activity of osteoclasts, leading to enhanced bone reabsorption and a subsequent net loss of bone tissue.
Aim: The purpose of this study was to examine the influence of a high-cholesterol diet on osteoporosis in male rats with differences in biological and oxidative indicators in the hypercholesterolemia diet in male rats.
Methods: The samples in this study were twenty male rats, ranging between 1.5 and 2 months, were separated into two groups. In one group, 10 rats were fed a regular diet, while in another group, 10 rats were fed a high-cholesterol diet (2%) over the course of 8 weeks. Samples of blood were obtained at the last stage of the experiment. To calculate physiological and biological markers including extracellular signal-regulated kinase (ERK), tartrate-resistant acid phosphatase (TRAP), hormones, malondialdehyde (MDA), and glutathione (GSH).
Results: The results of this study demonstrated a decrease in GSH levels, an increase in ERKs, no significant change in serum TRAP levels, an increase in MDA levels in the blood, and elevated levels of parathyroid hormone, calcitonin, and vitamin D in the cholesterol group.
Conclusion: Increased oxidative stress, altered signaling, and disruptions in calcium/bone metabolism associated with cholesterol-related conditions and monitoring biomarker ERK can provide valuable information about disease progression.
期刊介绍:
Open Veterinary Journal is a peer-reviewed international open access online and printed journal that publishes high-quality original research articles. reviews, short communications and case reports dedicated to all aspects of veterinary sciences and its related subjects. Research areas include the following: Infectious diseases of zoonotic/food-borne importance, applied biochemistry, parasitology, endocrinology, microbiology, immunology, pathology, pharmacology, physiology, epidemiology, molecular biology, immunogenetics, surgery, ophthalmology, dermatology, oncology and animal reproduction. All papers are peer-reviewed. Moreover, with the presence of well-qualified group of international referees, the process of publication will be done meticulously and to the highest standards.