揭示无菌条件下 Pinus massoniana 对 Bursaphelenchus xylophilus 的防御机制:转录组分析

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-09-16 DOI:10.1094/PHYTO-06-24-0180-R
Jinghui Zhu, Kean-Jin Lim, Tianyu Fang, Chen Zhang, Jianren Ye, Li-Hua Zhu
{"title":"揭示无菌条件下 Pinus massoniana 对 Bursaphelenchus xylophilus 的防御机制:转录组分析","authors":"Jinghui Zhu, Kean-Jin Lim, Tianyu Fang, Chen Zhang, Jianren Ye, Li-Hua Zhu","doi":"10.1094/PHYTO-06-24-0180-R","DOIUrl":null,"url":null,"abstract":"<p><p>Pine wilt disease (PWD) is caused by pine wood nematode (PWN, <i>Bursaphelenchus xylophilus</i>) and significantly impacts pine forest ecosystems globally. This study focuses on <i>Pinus massoniana</i>, an important timber and oleoresin resource in China, and is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors like bacteria, fungi, and environment, we established a reciprocal system between PWN and <i>P. massoniana</i> seedlings under aseptic conditions. Utilizing combined second and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post-PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 hours post-infection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in <i>P. massoniana</i>'s response to PWN. This comprehensive transcriptome profiling offers insights into <i>P. massoniana</i>'s intricate defense strategies against PWN under aseptic conditions laid a foundation for future functional analyses of key resistance genes.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling <i>Pinus massoniana</i>'s defense mechanisms against <i>Bursaphelenchus xylophilus</i> under aseptic conditions: A transcriptomic analysis.\",\"authors\":\"Jinghui Zhu, Kean-Jin Lim, Tianyu Fang, Chen Zhang, Jianren Ye, Li-Hua Zhu\",\"doi\":\"10.1094/PHYTO-06-24-0180-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pine wilt disease (PWD) is caused by pine wood nematode (PWN, <i>Bursaphelenchus xylophilus</i>) and significantly impacts pine forest ecosystems globally. This study focuses on <i>Pinus massoniana</i>, an important timber and oleoresin resource in China, and is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors like bacteria, fungi, and environment, we established a reciprocal system between PWN and <i>P. massoniana</i> seedlings under aseptic conditions. Utilizing combined second and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post-PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 hours post-infection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in <i>P. massoniana</i>'s response to PWN. This comprehensive transcriptome profiling offers insights into <i>P. massoniana</i>'s intricate defense strategies against PWN under aseptic conditions laid a foundation for future functional analyses of key resistance genes.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-06-24-0180-R\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-06-24-0180-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

松树枯萎病(PWD)由松材线虫(PWN,Bursaphelenchus xylophilus)引起,对全球松林生态系统造成严重影响。本研究主要针对中国重要的木材和油脂资源--极易受 PWN 侵染的马尾松。然而,松树应对 PWN 的防御机制仍不清楚。针对PWD受细菌、真菌和环境等多种因素影响的复杂性,我们在无菌条件下建立了PWN和P. massoniana幼苗之间的互作系统。利用第二代和第三代联合测序技术,我们确定了 3,718 个 PWN 感染后的差异表达基因。转录分析强调了通过二苯乙烯、水杨酸和茉莉酸途径激活防御机制、萜烯合成以及诱导致病相关蛋白和抗性基因的作用,这些作用主要发生在感染后 72 小时。值得注意的是,萜烯合成途径,尤其是甲羟戊酸途径,在防御中起着关键作用,这表明它们在 P. massoniana 对 PWN 的反应中具有重要意义。这项全面的转录组分析深入揭示了P. massoniana在无菌条件下对PWN的复杂防御策略,为今后对关键抗性基因进行功能分析奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling Pinus massoniana's defense mechanisms against Bursaphelenchus xylophilus under aseptic conditions: A transcriptomic analysis.

Pine wilt disease (PWD) is caused by pine wood nematode (PWN, Bursaphelenchus xylophilus) and significantly impacts pine forest ecosystems globally. This study focuses on Pinus massoniana, an important timber and oleoresin resource in China, and is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors like bacteria, fungi, and environment, we established a reciprocal system between PWN and P. massoniana seedlings under aseptic conditions. Utilizing combined second and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post-PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 hours post-infection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in P. massoniana's response to PWN. This comprehensive transcriptome profiling offers insights into P. massoniana's intricate defense strategies against PWN under aseptic conditions laid a foundation for future functional analyses of key resistance genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Biphenyl and dibenzofuran phytoalexins differentially inhibit root-associated microbiota in apple, including fungal and oomycetal replant disease pathogens. Loop-mediated isothermal amplification detection of Phytophthora kernoviae, Phytophthora ramorum, and the P. ramorum NA1 lineage on a microfluidic chip and smartphone platform. Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. Host-Driven Selection, Revealed by Comparative Analysis of Xanthomonas Type III Secretion Effectoromes, Unveils Novel Recognized Effectors. Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1