Laia Diez-Ahijado, Ariadna Cilleros-Portet, Nora Fernández-Jimenez, Mariana F Fernández, Monica Guxens, Jordi Julvez, Sabrina Llop, Maria-Jose Lopez-Espinosa, Mikel Subiza-Pérez, Manuel Lozano, Jesus Ibarluzea, Jordi Sunyer, Mariona Bustamante, Marta Cosin-Tomas
{"title":"评估胎盘 DNA 甲基化与后代认知功能之间的关联。","authors":"Laia Diez-Ahijado, Ariadna Cilleros-Portet, Nora Fernández-Jimenez, Mariana F Fernández, Monica Guxens, Jordi Julvez, Sabrina Llop, Maria-Jose Lopez-Espinosa, Mikel Subiza-Pérez, Manuel Lozano, Jesus Ibarluzea, Jordi Sunyer, Mariona Bustamante, Marta Cosin-Tomas","doi":"10.1038/s41398-024-03094-5","DOIUrl":null,"url":null,"abstract":"<p><p>The placenta plays a crucial role in protecting the fetus from environmental harm and supports the development of its brain. In fact, compromised placental function could predispose an individual to neurodevelopmental disorders. Placental epigenetic modifications, including DNA methylation, could be considered a proxy of placental function and thus plausible mediators of the association between intrauterine environmental exposures and genetics, and childhood and adult mental health. Although neurodevelopmental disorders such as autism spectrum disorder have been investigated in relation to placenta DNA methylation, no studies have addressed the association between placenta DNA methylation and child's cognitive functions. Thus, our goal here was to investigate whether the placental DNA methylation profile measured using the Illumina EPIC array is associated with three different cognitive domains (namely verbal score, perceptive performance score, and general cognitive score) assessed by the McCarthy Scales of Children's functions in childhood at age 4. To this end, we conducted epigenome-wide association analyses, including data from 255 mother-child pairs within the INMA project, and performed a follow-up functional analysis to help the interpretation of the findings. After multiple-testing correction, we found that methylation at 4 CpGs (cg1548200, cg02986379, cg00866476, and cg14113931) was significantly associated with the general cognitive score, and 2 distinct differentially methylated regions (DMRs) (including 27 CpGs) were significantly associated with each cognitive dimension. Interestingly, the genes annotated to these CpGs, such as DAB2, CEP76, PSMG2, or MECOM, are involved in placenta, fetal, and brain development. Moreover, functional enrichment analyses of suggestive CpGs (p < 1 × 10<sup>-4</sup>) revealed gene sets involved in placenta development, fetus formation, and brain growth. These findings suggest that placental DNA methylation could be a mechanism contributing to the alteration of important pathways in the placenta that have a consequence on the offspring's brain development and cognitive function.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415363/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the association between placenta DNA methylation and cognitive functions in the offspring.\",\"authors\":\"Laia Diez-Ahijado, Ariadna Cilleros-Portet, Nora Fernández-Jimenez, Mariana F Fernández, Monica Guxens, Jordi Julvez, Sabrina Llop, Maria-Jose Lopez-Espinosa, Mikel Subiza-Pérez, Manuel Lozano, Jesus Ibarluzea, Jordi Sunyer, Mariona Bustamante, Marta Cosin-Tomas\",\"doi\":\"10.1038/s41398-024-03094-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The placenta plays a crucial role in protecting the fetus from environmental harm and supports the development of its brain. In fact, compromised placental function could predispose an individual to neurodevelopmental disorders. Placental epigenetic modifications, including DNA methylation, could be considered a proxy of placental function and thus plausible mediators of the association between intrauterine environmental exposures and genetics, and childhood and adult mental health. Although neurodevelopmental disorders such as autism spectrum disorder have been investigated in relation to placenta DNA methylation, no studies have addressed the association between placenta DNA methylation and child's cognitive functions. Thus, our goal here was to investigate whether the placental DNA methylation profile measured using the Illumina EPIC array is associated with three different cognitive domains (namely verbal score, perceptive performance score, and general cognitive score) assessed by the McCarthy Scales of Children's functions in childhood at age 4. To this end, we conducted epigenome-wide association analyses, including data from 255 mother-child pairs within the INMA project, and performed a follow-up functional analysis to help the interpretation of the findings. After multiple-testing correction, we found that methylation at 4 CpGs (cg1548200, cg02986379, cg00866476, and cg14113931) was significantly associated with the general cognitive score, and 2 distinct differentially methylated regions (DMRs) (including 27 CpGs) were significantly associated with each cognitive dimension. Interestingly, the genes annotated to these CpGs, such as DAB2, CEP76, PSMG2, or MECOM, are involved in placenta, fetal, and brain development. Moreover, functional enrichment analyses of suggestive CpGs (p < 1 × 10<sup>-4</sup>) revealed gene sets involved in placenta development, fetus formation, and brain growth. These findings suggest that placental DNA methylation could be a mechanism contributing to the alteration of important pathways in the placenta that have a consequence on the offspring's brain development and cognitive function.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-024-03094-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03094-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
摘要
胎盘在保护胎儿免受环境伤害和支持胎儿大脑发育方面起着至关重要的作用。事实上,胎盘功能受损会导致神经发育障碍。胎盘的表观遗传修饰(包括 DNA 甲基化)可被视为胎盘功能的替代物,因此是宫内环境暴露和遗传与儿童和成人精神健康之间联系的合理中介。虽然已经研究了自闭症谱系障碍等神经发育疾病与胎盘 DNA 甲基化的关系,但还没有研究涉及胎盘 DNA 甲基化与儿童认知功能之间的关系。因此,我们的目标是研究使用Illumina EPIC阵列测量的胎盘DNA甲基化特征是否与麦卡锡儿童功能量表(McCarthy Scales of Children's functions)评估的4岁儿童的三个不同认知领域(即言语得分、感知表现得分和一般认知得分)相关。为此,我们进行了全表观基因组关联分析,包括 INMA 项目中 255 对母子的数据,并进行了后续功能分析,以帮助解释研究结果。经过多重检验校正后,我们发现4个CpGs(cg1548200、cg02986379、cg00866476和cg14113931)的甲基化与一般认知评分显著相关,2个不同的甲基化区域(DMRs)(包括27个CpGs)与每个认知维度显著相关。有趣的是,这些CpGs注释的基因,如DAB2、CEP76、PSMG2或MECOM,都参与了胎盘、胎儿和大脑的发育。此外,对提示性 CpGs(p-4)的功能富集分析显示,基因组涉及胎盘发育、胎儿形成和大脑生长。这些研究结果表明,胎盘 DNA 甲基化可能是导致胎盘重要通路改变的一种机制,对后代的大脑发育和认知功能有影响。
Evaluating the association between placenta DNA methylation and cognitive functions in the offspring.
The placenta plays a crucial role in protecting the fetus from environmental harm and supports the development of its brain. In fact, compromised placental function could predispose an individual to neurodevelopmental disorders. Placental epigenetic modifications, including DNA methylation, could be considered a proxy of placental function and thus plausible mediators of the association between intrauterine environmental exposures and genetics, and childhood and adult mental health. Although neurodevelopmental disorders such as autism spectrum disorder have been investigated in relation to placenta DNA methylation, no studies have addressed the association between placenta DNA methylation and child's cognitive functions. Thus, our goal here was to investigate whether the placental DNA methylation profile measured using the Illumina EPIC array is associated with three different cognitive domains (namely verbal score, perceptive performance score, and general cognitive score) assessed by the McCarthy Scales of Children's functions in childhood at age 4. To this end, we conducted epigenome-wide association analyses, including data from 255 mother-child pairs within the INMA project, and performed a follow-up functional analysis to help the interpretation of the findings. After multiple-testing correction, we found that methylation at 4 CpGs (cg1548200, cg02986379, cg00866476, and cg14113931) was significantly associated with the general cognitive score, and 2 distinct differentially methylated regions (DMRs) (including 27 CpGs) were significantly associated with each cognitive dimension. Interestingly, the genes annotated to these CpGs, such as DAB2, CEP76, PSMG2, or MECOM, are involved in placenta, fetal, and brain development. Moreover, functional enrichment analyses of suggestive CpGs (p < 1 × 10-4) revealed gene sets involved in placenta development, fetus formation, and brain growth. These findings suggest that placental DNA methylation could be a mechanism contributing to the alteration of important pathways in the placenta that have a consequence on the offspring's brain development and cognitive function.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.