{"title":"基于Fe3O4@coPPy-PTH纳米复合材料的磁性固相萃取技术,用于用微样品进样系统-火焰原子吸收光谱法测定酒精饮料和非酒精饮料中的钴、铬和镍。","authors":"Melike Küçüksakalli, Qamar Salamat, Buket Tireli, Şükrü Gökhan Elçi","doi":"10.55730/1300-0527.3683","DOIUrl":null,"url":null,"abstract":"<p><p>A novel Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite-based sorbent was prepared via in situ oxidative polymerization using Fe<sub>3</sub>O<sub>4</sub> nanoparticles with spherical and flower-like morphologies of thiophene and pyrrole as the feedstocks. The synthesized nanocomposite displayed sensitive extraction and determination of metal ions Co(II), Cr(III), and Ni(II) without a chelating agent, followed by microsample injection system-flame atomic absorption spectrometry. Advanced spectroscopic and imaging techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy were used to characterize the composition and morphology of the Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite. SEM observations showed that the size of the Fe<sub>3</sub>O<sub>4</sub> nanoparticles changed from 30 nm to 120 nm in diameter after copolymer (PPy-PTH) coating. The Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite has good dispersion properties and stability in strong acid solutions. For effective extraction of the studied analytes, the influence of sample pH, volume of sample solution and eluent, amount of adsorbent, and interference of coexisting metal ions were optimized. Under the optimum conditions, preconcentration factors were obtained as 25 for all analytes. The calibration curves were linear in the range of 0.0-10.0 μg L<sup>-1</sup> with coefficients of determination (R<sup>2</sup>) greater than 0.9957 for all three analytes. Limits of detection (S/N = 3) were calculated in the range of 0.17-0.23 μg L<sup>-1</sup>. Precision values, expressed as relative standard deviations, were lower than 3.0%, and relative recoveries were obtained in the range of 88.6%-103.6%. The proposed method (Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH/MSPE/MIS-FAAS) was successfully applied to extract and determine the studied metal ions in beer, wine, and nonalcoholic beverage samples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic solid-phase extraction technique based on Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite for extraction of cobalt, chromium, and nickel prior to determination by microsample injection system-flame atomic absorption spectrometry in alcoholic and nonalcoholic beverages.\",\"authors\":\"Melike Küçüksakalli, Qamar Salamat, Buket Tireli, Şükrü Gökhan Elçi\",\"doi\":\"10.55730/1300-0527.3683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite-based sorbent was prepared via in situ oxidative polymerization using Fe<sub>3</sub>O<sub>4</sub> nanoparticles with spherical and flower-like morphologies of thiophene and pyrrole as the feedstocks. The synthesized nanocomposite displayed sensitive extraction and determination of metal ions Co(II), Cr(III), and Ni(II) without a chelating agent, followed by microsample injection system-flame atomic absorption spectrometry. Advanced spectroscopic and imaging techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy were used to characterize the composition and morphology of the Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite. SEM observations showed that the size of the Fe<sub>3</sub>O<sub>4</sub> nanoparticles changed from 30 nm to 120 nm in diameter after copolymer (PPy-PTH) coating. The Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH nanocomposite has good dispersion properties and stability in strong acid solutions. For effective extraction of the studied analytes, the influence of sample pH, volume of sample solution and eluent, amount of adsorbent, and interference of coexisting metal ions were optimized. Under the optimum conditions, preconcentration factors were obtained as 25 for all analytes. The calibration curves were linear in the range of 0.0-10.0 μg L<sup>-1</sup> with coefficients of determination (R<sup>2</sup>) greater than 0.9957 for all three analytes. Limits of detection (S/N = 3) were calculated in the range of 0.17-0.23 μg L<sup>-1</sup>. Precision values, expressed as relative standard deviations, were lower than 3.0%, and relative recoveries were obtained in the range of 88.6%-103.6%. The proposed method (Fe<sub>3</sub>O<sub>4</sub>@coPPy-PTH/MSPE/MIS-FAAS) was successfully applied to extract and determine the studied metal ions in beer, wine, and nonalcoholic beverage samples.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3683\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic solid-phase extraction technique based on Fe3O4@coPPy-PTH nanocomposite for extraction of cobalt, chromium, and nickel prior to determination by microsample injection system-flame atomic absorption spectrometry in alcoholic and nonalcoholic beverages.
A novel Fe3O4@coPPy-PTH nanocomposite-based sorbent was prepared via in situ oxidative polymerization using Fe3O4 nanoparticles with spherical and flower-like morphologies of thiophene and pyrrole as the feedstocks. The synthesized nanocomposite displayed sensitive extraction and determination of metal ions Co(II), Cr(III), and Ni(II) without a chelating agent, followed by microsample injection system-flame atomic absorption spectrometry. Advanced spectroscopic and imaging techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy were used to characterize the composition and morphology of the Fe3O4@coPPy-PTH nanocomposite. SEM observations showed that the size of the Fe3O4 nanoparticles changed from 30 nm to 120 nm in diameter after copolymer (PPy-PTH) coating. The Fe3O4@coPPy-PTH nanocomposite has good dispersion properties and stability in strong acid solutions. For effective extraction of the studied analytes, the influence of sample pH, volume of sample solution and eluent, amount of adsorbent, and interference of coexisting metal ions were optimized. Under the optimum conditions, preconcentration factors were obtained as 25 for all analytes. The calibration curves were linear in the range of 0.0-10.0 μg L-1 with coefficients of determination (R2) greater than 0.9957 for all three analytes. Limits of detection (S/N = 3) were calculated in the range of 0.17-0.23 μg L-1. Precision values, expressed as relative standard deviations, were lower than 3.0%, and relative recoveries were obtained in the range of 88.6%-103.6%. The proposed method (Fe3O4@coPPy-PTH/MSPE/MIS-FAAS) was successfully applied to extract and determine the studied metal ions in beer, wine, and nonalcoholic beverage samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.