利用挡板上流式微生物电解槽从酒厂废水中生成生物氢。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2024-09-01 DOI:10.1002/wer.11119
Jayachitra Murugaiyan, Anantharaman Narayanan, Samsudeen Naina Mohamed
{"title":"利用挡板上流式微生物电解槽从酒厂废水中生成生物氢。","authors":"Jayachitra Murugaiyan, Anantharaman Narayanan, Samsudeen Naina Mohamed","doi":"10.1002/wer.11119","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial electrolysis cell (MEC) is gaining importance not only for effectively treating wastewater but also for producing hydrogen. The up-flow microbial electrolysis cell (UPMEC) is an innovative approach to enhance the efficiency, and substrate degradation. In this study, a baffled UPMEC with an anode divided into three regions by inserting the baffle (sieve) plates at varying distances from the cathode was designed. The effect of process parameters, such as flow rate (10, 15, and 20 mL/min), electrode area (50, 100, and 150 cm<sup>2</sup>), and catholyte buffer concentration (50, 100, and 150 mM) were investigated using distillery wastewater as substrate. The experimental results showed a maximum of 0.6837 ± 0.02 mmol/L biohydrogen at 150 mM buffer, with 49 ± 1.0% COD reduction using an electrode of area 150 cm<sup>2</sup>. The maximum current density was 1335.94 mA/m<sup>2</sup> for the flow rate of 15 mL/min and surface area of 150 cm<sup>2</sup>. The results showed that at optimized flow rate and buffer concentration, maximum hydrogen production and effective treatment of wastewater were achieved in the baffled UPMEC. PRACTITIONER POINTS: Biohydrogen production from distillery wastewater was investigated in a baffled UPMEC. Flowrate, concentration and electrode areas significantly influenced the hydrogen production. Maximum hydrogen (0.6837±0.02mmol/L.day) production and COD reduction (49±1.0%) was achieved at 15 mL/min. Highest CHR of 95.37±1.9 % and OHR of 4.6±0.09 % was observed at 150 mM buffer concentration.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11119"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biohydrogen generation from distillery effluent using baffled up-flow microbial electrolysis cell.\",\"authors\":\"Jayachitra Murugaiyan, Anantharaman Narayanan, Samsudeen Naina Mohamed\",\"doi\":\"10.1002/wer.11119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial electrolysis cell (MEC) is gaining importance not only for effectively treating wastewater but also for producing hydrogen. The up-flow microbial electrolysis cell (UPMEC) is an innovative approach to enhance the efficiency, and substrate degradation. In this study, a baffled UPMEC with an anode divided into three regions by inserting the baffle (sieve) plates at varying distances from the cathode was designed. The effect of process parameters, such as flow rate (10, 15, and 20 mL/min), electrode area (50, 100, and 150 cm<sup>2</sup>), and catholyte buffer concentration (50, 100, and 150 mM) were investigated using distillery wastewater as substrate. The experimental results showed a maximum of 0.6837 ± 0.02 mmol/L biohydrogen at 150 mM buffer, with 49 ± 1.0% COD reduction using an electrode of area 150 cm<sup>2</sup>. The maximum current density was 1335.94 mA/m<sup>2</sup> for the flow rate of 15 mL/min and surface area of 150 cm<sup>2</sup>. The results showed that at optimized flow rate and buffer concentration, maximum hydrogen production and effective treatment of wastewater were achieved in the baffled UPMEC. PRACTITIONER POINTS: Biohydrogen production from distillery wastewater was investigated in a baffled UPMEC. Flowrate, concentration and electrode areas significantly influenced the hydrogen production. Maximum hydrogen (0.6837±0.02mmol/L.day) production and COD reduction (49±1.0%) was achieved at 15 mL/min. Highest CHR of 95.37±1.9 % and OHR of 4.6±0.09 % was observed at 150 mM buffer concentration.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"96 9\",\"pages\":\"e11119\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.11119\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11119","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

微生物电解池(MEC)不仅能有效处理废水,还能生产氢气,其重要性与日俱增。上流式微生物电解池(UPMEC)是一种提高效率和基质降解的创新方法。本研究设计了一种障板式 UPMEC,通过在阳极与阴极之间插入不同距离的障板(筛板),将阳极分为三个区域。以酒厂废水为基质,研究了流量(10、15 和 20 mL/min)、电极面积(50、100 和 150 cm2)和阴极缓冲液浓度(50、100 和 150 mM)等工艺参数的影响。实验结果表明,在 150 mM 缓冲溶液中,生物氢的最大值为 0.6837 ± 0.02 mmol/L,使用面积为 150 cm2 的电极,COD 的减少量为 49 ± 1.0%。在流速为 15 mL/min 和表面积为 150 cm2 时,最大电流密度为 1335.94 mA/m2。结果表明,在优化流速和缓冲液浓度的情况下,挡板式 UPMEC 的产氢量和废水处理效果都达到了最大值。实践点:在障板式 UPMEC 中研究了蒸馏废水的生物制氢。流速、浓度和电极面积对产氢量有显著影响。15 mL/min 时,产氢量(0.6837±0.02mmol/L.day)和 COD 减排量(49±1.0%)最大。在 150 mM 缓冲液浓度下,CHR 和 OHR 分别为 95.37±1.9 % 和 4.6±0.09 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biohydrogen generation from distillery effluent using baffled up-flow microbial electrolysis cell.

Microbial electrolysis cell (MEC) is gaining importance not only for effectively treating wastewater but also for producing hydrogen. The up-flow microbial electrolysis cell (UPMEC) is an innovative approach to enhance the efficiency, and substrate degradation. In this study, a baffled UPMEC with an anode divided into three regions by inserting the baffle (sieve) plates at varying distances from the cathode was designed. The effect of process parameters, such as flow rate (10, 15, and 20 mL/min), electrode area (50, 100, and 150 cm2), and catholyte buffer concentration (50, 100, and 150 mM) were investigated using distillery wastewater as substrate. The experimental results showed a maximum of 0.6837 ± 0.02 mmol/L biohydrogen at 150 mM buffer, with 49 ± 1.0% COD reduction using an electrode of area 150 cm2. The maximum current density was 1335.94 mA/m2 for the flow rate of 15 mL/min and surface area of 150 cm2. The results showed that at optimized flow rate and buffer concentration, maximum hydrogen production and effective treatment of wastewater were achieved in the baffled UPMEC. PRACTITIONER POINTS: Biohydrogen production from distillery wastewater was investigated in a baffled UPMEC. Flowrate, concentration and electrode areas significantly influenced the hydrogen production. Maximum hydrogen (0.6837±0.02mmol/L.day) production and COD reduction (49±1.0%) was achieved at 15 mL/min. Highest CHR of 95.37±1.9 % and OHR of 4.6±0.09 % was observed at 150 mM buffer concentration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. Removal of Fe2+ in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling. Biofilm characterization and dynamic simulation of advanced rope media reactor for the treatment of primary effluent. Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1