使用间接转换动态平板探测器评估帧频对心脏病学图像质量的影响。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-09-18 DOI:10.1007/s12194-024-00845-3
Akira Hasegawa, Yohan Kondo
{"title":"使用间接转换动态平板探测器评估帧频对心脏病学图像质量的影响。","authors":"Akira Hasegawa, Yohan Kondo","doi":"10.1007/s12194-024-00845-3","DOIUrl":null,"url":null,"abstract":"<p><p>To verify the effect of the frame rate on image quality in cardiology, we used an indirect conversion dynamic flat-panel detector (FPD). We quantified the input-output characteristics, and determined the modulation transfer function (MTF) and normalized noise power spectrum (NNPS) of the equipment used in cardiology at 7.5, 10, 15, and 30 frames per second (fps). We also calculated the noise power spectrum for still images and videos at all frame rates and obtained the image lag correction factor r. The input-output characteristics and the MTF agreed even when the frame rate was varied. The NNPS tended to decrease uniformly as a function of frequency at increasing frame rates. The factor r decreased as a function of the frame rate, and its minimum value was 30 fps. Our results suggest that high-frame-rate imaging in cardiology using indirect conversion dynamic FPDs is affected by image lag.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of frame rate on image quality in cardiology evaluated using an indirect conversion dynamic flat-panel detector.\",\"authors\":\"Akira Hasegawa, Yohan Kondo\",\"doi\":\"10.1007/s12194-024-00845-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To verify the effect of the frame rate on image quality in cardiology, we used an indirect conversion dynamic flat-panel detector (FPD). We quantified the input-output characteristics, and determined the modulation transfer function (MTF) and normalized noise power spectrum (NNPS) of the equipment used in cardiology at 7.5, 10, 15, and 30 frames per second (fps). We also calculated the noise power spectrum for still images and videos at all frame rates and obtained the image lag correction factor r. The input-output characteristics and the MTF agreed even when the frame rate was varied. The NNPS tended to decrease uniformly as a function of frequency at increasing frame rates. The factor r decreased as a function of the frame rate, and its minimum value was 30 fps. Our results suggest that high-frame-rate imaging in cardiology using indirect conversion dynamic FPDs is affected by image lag.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00845-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00845-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

为了验证帧频对心脏病学图像质量的影响,我们使用了间接转换动态平板探测器(FPD)。我们对输入输出特性进行了量化,并确定了心脏科所用设备在 7.5、10、15 和 30 帧/秒 (fps) 下的调制传递函数 (MTF) 和归一化噪声功率谱 (NNPS)。我们还计算了所有帧频下静止图像和视频的噪声功率谱,并获得了图像滞后校正因子 r。随着帧频的增加,NNPS 随频率的变化呈均匀下降趋势。系数 r 随帧率的变化而减小,其最小值为 30 帧/秒。我们的结果表明,在心脏病学中使用间接转换动态 FPD 进行高帧率成像会受到图像滞后的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of frame rate on image quality in cardiology evaluated using an indirect conversion dynamic flat-panel detector.

To verify the effect of the frame rate on image quality in cardiology, we used an indirect conversion dynamic flat-panel detector (FPD). We quantified the input-output characteristics, and determined the modulation transfer function (MTF) and normalized noise power spectrum (NNPS) of the equipment used in cardiology at 7.5, 10, 15, and 30 frames per second (fps). We also calculated the noise power spectrum for still images and videos at all frame rates and obtained the image lag correction factor r. The input-output characteristics and the MTF agreed even when the frame rate was varied. The NNPS tended to decrease uniformly as a function of frequency at increasing frame rates. The factor r decreased as a function of the frame rate, and its minimum value was 30 fps. Our results suggest that high-frame-rate imaging in cardiology using indirect conversion dynamic FPDs is affected by image lag.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Optimization of image shoot timing for cerebral veins 3D-digital subtraction angiography by interventional angiography systems. Anomaly detection scheme for lung CT images using vector quantized variational auto-encoder with support vector data description. Deep learning-based approach for acquisition time reduction in ventilation SPECT in patients after lung transplantation. Visualization of X-ray fields, overlaps, and over-beaming on surface of the head in spiral computed tomography using computer-aided design-based X-ray beam modeling. Optimization of image reconstruction technique for respiratory-gated lung stereotactic body radiotherapy treatment planning using four-dimensional CT: a phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1