Wesley Bocquet, Roger Bouzerar, Géraldine François, Antoine Leleu, Cédric Renard
{"title":"利用深度学习图像重构算法在超低剂量胸部计算机断层扫描上检测肺结节","authors":"Wesley Bocquet, Roger Bouzerar, Géraldine François, Antoine Leleu, Cédric Renard","doi":"10.1097/RTI.0000000000000806","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the accuracy of ultra-low dose (ULD) chest computed tomography (CT), with a radiation exposure equivalent to a 2-view chest x-ray, for pulmonary nodule detection using deep learning image reconstruction (DLIR).</p><p><strong>Material and methods: </strong>This prospective cross-sectional study included 60 patients referred to our institution for assessment or follow-up of solid pulmonary nodules. All patients underwent low-dose (LD) and ULD chest CT within the same examination session. LD CT data were reconstructed using Adaptive Statistical Iterative Reconstruction-V (ASIR-V), whereas ULD CT data were reconstructed using DLIR and ASIR-V. ULD CT images were reviewed by 2 readers and LD CT images were reviewed by an experienced thoracic radiologist as the reference standard. Quantitative image quality analysis was performed, and the detectability of pulmonary nodules was assessed according to their size and location.</p><p><strong>Results: </strong>The effective radiation dose for ULD CT and LD CT were 0.13±0.01 and 1.16±0.6 mSv, respectively. Over the whole population, LD CT revealed 733 nodules. At ULD, DLIR images significantly exhibited better image quality than ASIR-V images. The overall sensitivity of DLIR reconstruction for the detection of solid pulmonary nodules from the ULD CT series was 93% and 82% for the 2 readers, with a good to excellent agreement with LD CT (ICC=0.82 and 0.66, respectively). The best sensitivities were observed in the middle lobe (97% and 85%, respectively).</p><p><strong>Conclusions: </strong>At ULD, DLIR reconstructions, with minimal radiation exposure that could facilitate large-scale screening, allow the detection of pulmonary nodules with high sensitivity in an unrestricted BMI population.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Pulmonary Nodules on Ultra-low Dose Chest Computed Tomography With Deep-learning Image Reconstruction Algorithm.\",\"authors\":\"Wesley Bocquet, Roger Bouzerar, Géraldine François, Antoine Leleu, Cédric Renard\",\"doi\":\"10.1097/RTI.0000000000000806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the accuracy of ultra-low dose (ULD) chest computed tomography (CT), with a radiation exposure equivalent to a 2-view chest x-ray, for pulmonary nodule detection using deep learning image reconstruction (DLIR).</p><p><strong>Material and methods: </strong>This prospective cross-sectional study included 60 patients referred to our institution for assessment or follow-up of solid pulmonary nodules. All patients underwent low-dose (LD) and ULD chest CT within the same examination session. LD CT data were reconstructed using Adaptive Statistical Iterative Reconstruction-V (ASIR-V), whereas ULD CT data were reconstructed using DLIR and ASIR-V. ULD CT images were reviewed by 2 readers and LD CT images were reviewed by an experienced thoracic radiologist as the reference standard. Quantitative image quality analysis was performed, and the detectability of pulmonary nodules was assessed according to their size and location.</p><p><strong>Results: </strong>The effective radiation dose for ULD CT and LD CT were 0.13±0.01 and 1.16±0.6 mSv, respectively. Over the whole population, LD CT revealed 733 nodules. At ULD, DLIR images significantly exhibited better image quality than ASIR-V images. The overall sensitivity of DLIR reconstruction for the detection of solid pulmonary nodules from the ULD CT series was 93% and 82% for the 2 readers, with a good to excellent agreement with LD CT (ICC=0.82 and 0.66, respectively). The best sensitivities were observed in the middle lobe (97% and 85%, respectively).</p><p><strong>Conclusions: </strong>At ULD, DLIR reconstructions, with minimal radiation exposure that could facilitate large-scale screening, allow the detection of pulmonary nodules with high sensitivity in an unrestricted BMI population.</p>\",\"PeriodicalId\":49974,\"journal\":{\"name\":\"Journal of Thoracic Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thoracic Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RTI.0000000000000806\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000806","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Detection of Pulmonary Nodules on Ultra-low Dose Chest Computed Tomography With Deep-learning Image Reconstruction Algorithm.
Purpose: To evaluate the accuracy of ultra-low dose (ULD) chest computed tomography (CT), with a radiation exposure equivalent to a 2-view chest x-ray, for pulmonary nodule detection using deep learning image reconstruction (DLIR).
Material and methods: This prospective cross-sectional study included 60 patients referred to our institution for assessment or follow-up of solid pulmonary nodules. All patients underwent low-dose (LD) and ULD chest CT within the same examination session. LD CT data were reconstructed using Adaptive Statistical Iterative Reconstruction-V (ASIR-V), whereas ULD CT data were reconstructed using DLIR and ASIR-V. ULD CT images were reviewed by 2 readers and LD CT images were reviewed by an experienced thoracic radiologist as the reference standard. Quantitative image quality analysis was performed, and the detectability of pulmonary nodules was assessed according to their size and location.
Results: The effective radiation dose for ULD CT and LD CT were 0.13±0.01 and 1.16±0.6 mSv, respectively. Over the whole population, LD CT revealed 733 nodules. At ULD, DLIR images significantly exhibited better image quality than ASIR-V images. The overall sensitivity of DLIR reconstruction for the detection of solid pulmonary nodules from the ULD CT series was 93% and 82% for the 2 readers, with a good to excellent agreement with LD CT (ICC=0.82 and 0.66, respectively). The best sensitivities were observed in the middle lobe (97% and 85%, respectively).
Conclusions: At ULD, DLIR reconstructions, with minimal radiation exposure that could facilitate large-scale screening, allow the detection of pulmonary nodules with high sensitivity in an unrestricted BMI population.
期刊介绍:
Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology.
Official Journal of the Society of Thoracic Radiology:
Japanese Society of Thoracic Radiology
Korean Society of Thoracic Radiology
European Society of Thoracic Imaging.